
Semantic Web Languages for Policy Representation
and Reasoning: A Comparison of KAoS, Rei, and Ponder

Gianluca Tonti1,2, Jeffrey M. Bradshaw1, Renia Jeffers1, Rebecca Montanari2,
Niranjan Suri1, and Andrzej Uszok1

1 Institute for Human and Machine Cognition (IHMC)
University of West Florida

40 S. Alcaniz Street, Pensacola, FL 32501 – USA
{jbradshaw, rjeffers, nsuri, gtonti, auszok}@ihmc.us

2 Dipartimento di Elettronica, Informatica e Sistemistica
University of Bologna

Viale Risorgimento, 2 - 40136 Bologna - ITALY
{rmontanari, gtonti}@deis.unibo.it

Abstract. Policies are being increasingly used for automated system manage-
ment and controlling the behavior of complex systems. The use of policies al-
lows administrators to modify system behavior without changing source code or
requiring the consent or cooperation of the components being governed. Early
approaches to policy representation have been restrictive in many ways. How-
ever semantically-rich policy representations can reduce human error, simplify
policy analysis, reduce policy conflicts, and facilitate interoperability. In this
paper, we compare three approaches to policy representation, reasoning, and en-
forcement. We highlight similarities and differences between Ponder, KAoS,
and Rei, and sketch out some general criteria and properties for more adequate
approaches to policy semantics in the future.

1 Introduction

Until recently, the use of Semantic Web languages has been limited primarily to repre-
senting Web content and services. However the capabilities of these languages, cou-
pled with the increasing availability of mature environments and tools to facilitate
their use, make them well suited for many other kinds of applications. In this paper,
we evaluate ongoing efforts to use Semantic Web languages to represent and reason
about policies for multi-agent and distributed systems. In particular, we intend to show
the strengths and limitations of such languages for policy representation and reasoning
by comparing and contrasting three approaches: KAoS, Rei and Ponder.

Policies are a means to dynamically regulate the behavior of system components
without changing code and without requiring the consent or cooperation of the com-
ponents being governed [1, 2]. By changing policies, a system can be continuously
adjusted to accommodate variations in externally imposed constraints and environ-
mental conditions. The adoption of a policy based-approach for controlling a system
requires an appropriate policy representation and the design and development of a
policy management framework. Policies will become increasingly more important to
the real world implementation of Semantic Web Services [3, 4].

KAoS uses DAML1 (and soon will use OWL2) as the basis for representing and
reasoning about policies within Web Services, Grid Computing, and multi-agent sys-
tem platforms [2, 3, 4, 5]. KAoS also exploits ontologies for representing and reason-
ing about domains describing organizations of human, agent, and other computational
actors. Rei is a new deontic concept-based policy language that is currently imple-
mented in Prolog with a semantic representation of policies in RDF-S. In the future, it
is expected that Rei will support OWL and Notation33 ontologies [6, 7]. Ponder is an
object-oriented policy language for the management of distributed systems and net-
works [1, 8]. The developers of Ponder pioneered many of the policy management
concepts used in KAoS and Rei, though its implementation differs in important ways
[9].

The paper is organized as follows. Section 2 describes the motivation and back-
ground of policy-based approaches for the management of software systems, begin-
ning with the extensive research over the last decade about the management of net-
work and quality of service and continuing to the present day in new application areas
such as the control of multi-agent systems. Section 3 briefly presents the three differ-
ent approaches for policy representation, reasoning, and enforcement. These are com-
pared in Section 4 through the implementation of a common example of a communica-
tion policy. This is followed by a discussion of the approaches and of some of the
open issues that must be resolved as a prerequisite to widespread adoption. Finally, in
Section 5, we present some conclusions.

2 Motivation and Background for Policy-Based Management

Policies, which constrain the behavior of system components, are becoming an in-
creasingly popular approach to dynamic adjustability of applications in academia and
industry. Elsewhere [2], we have pointed out the many benefits of policy-based ap-
proaches, including reusability, efficiency, extensibility, context-sensitivity, verifiabil-
ity, support for both simple and sophisticated components, protection from poorly-
designed, buggy, or malicious components, and reasoning about component behavior.
Policies have important analogues in animal societies and human cultures [10].

Policy-based network management has been the subject of extensive research over
the last decade [11]. Policies are often applied to automate network administration
tasks, such as configuration, security, recovery, or quality of service (QoS). In the
network management field, policies are expressed as sets of rules governing choices in
the behavior of the network. Multiple approaches for policy specification have been
proposed that range from formal policy languages that can be processed and inter-
preted easily and directly by a computer, to rule-based policy notation using an if-
then-else format, to the representation of policies as entries in a table consisting of
multiple attributes [12, 13, 14]. There are also ongoing standardization efforts toward
common policy information models and frameworks. The Internet Engineering Task

1 DARPA Agent Markup Language (http://www.daml.org)
2 Web Ontology Language (http://www.w3.org/2001/sw/WebOnt/)
3 http://www.w3.org/DesignIssues/Notation3.html

Force, for instance, has been investigating policies as a means for managing IP-
multiservice networks by focusing on the specification of protocols and object-
oriented models for representing policies [15].

The scope of policy management is increasingly going beyond these traditional
applications in significant ways. New challenges for policy management include:

• sources and methods protection, digital rights management, information
filtering and transformation, capability-based access;

• active networks, agile computing, pervasive and mobile systems;
• organizational modeling, coalition formation, formalizing cross-

organizational agreements;
• trust models, trust management, information pedigrees;
• effective human-machine interaction: interruption and notification man-

agement, presence management, adjustable autonomy, teamwork facilita-
tion, safety; and

• intelligent retrieval of all policies relevant to some situation.
The management of multi-agent systems represents one of the most promising

fields for the exploitation of policy-based approaches [2, 6, 16]. By their ability to
operate independently without constant human supervision, agents can perform tasks
that would be impractical or impossible using traditional software applications. On the
other hand, this additional autonomy, if unchecked, also has the potential of effecting
severe damage if agents are poorly designed, buggy, or malicious.

Controlling agent behavior is a complex task because agent behavior cannot be a-
priori programmed to face any operative run-time situation, but requires dynamic and
continuous adjustments to allow agents to act in any execution context in the most
suitable way [2]. From a technical perspective, we want to be able to help ensure the
protection of agent state, the viability of agent communities, and the reliability of the
resources on which they depend. To accomplish this, we must guarantee, insofar as is
possible, that the autonomy of agents can always be bounded by explicit enforceable
policy that can be continually adjusted to maximize the agents’ effectiveness and
safety in both human and computational environments. From a social perspective, we
want agents to be designed to fit well with how people actually work together. Explicit
policies governing human-agent interaction, based on careful observation of work
practice and an understanding of current social science research, can help assure that
effective and natural coordination, appropriate levels and modalities of feedback, and
adequate predictability and responsiveness to human control are maintained [17]. In
short, interaction among humans and agents must be graceful and should enhance
rather than hinder human work. All these factors are key to providing the reassurance
and trust that are the prerequisites to the widespread acceptance of agent technology
for non-trivial applications.

3 Policy Languages and Frameworks

Policies can be specified in many different ways and multiple approaches have been
proposed in different application domains [11]. There are, however, some general
requirements that any policy representation should satisfy regardless of its field of

applicability: expressiveness to handle the wide range of policy requirements arising
in the system being managed, simplicity to ease the policy definition tasks for adminis-
trators with different degrees of expertise, enforceability to ensure a mapping of pol-
icy specifications into implementable policies for various platforms, scalabilty to
ensure adequate performance, and analyzability to allow reasoning about policies. The
challenge is to achieve a suitable balance among the objectives of expressiveness,
computational tractability, and ease of use.

The aim of this section is not to provide a general survey of the state-of-the-art in
policy representation, but to describe selected technical aspects of a few policy ap-
proaches that have been specifically designed and extensively tested for management
of multi-agent and distributed systems. We first present KAoS followed by Rei, both
of which were originally designed for governing agent behavior, and finally Ponder
which is one of the most well-known policy-based systems for network management
and is being evaluated in several universities and industrial organizations.

3.1 KAoS

KAoS a collection of componentized policy and domain management services com-
patible with several popular agent frameworks, including Nomads [18], the DARPA
CoABS Grid [19], the DARPA ALP/Ultra*Log Cougaar framework
(http://www.cougaar.net), CORBA (http://www.omg.org), Voyager
(http://www.recursionsw.com/osi.asp), and Brahms (www.agentisolutions.com).
While initially oriented to the dynamic and complex requirements of software agent
applications, KAoS services are also being adapted to general-purpose grid computing
(http://www.gridforum.org) and Web Services (http://www.w3.org/2002/ws/) envi-
ronments as well [3, 4]. KAoS has been deployed in a wide variety of applications,
from coalition warfare [5, 16], to robustness and survivability for distributed systems
[http://www.ultralog.net], to human-agent teamwork in space applications [17], to
cognitive prostheses [2]. See [2] for a summary of these and other applications.

KAoS domain services provide the capability for groups of software components,
people, resources, and other entities to be organized into domains and subdomains to
facilitate agent-agent collaboration and external policy administration.

KAoS policy services allow for the specification, management, conflict resolution,
and enforcement of policies within domains. Policies are currently represented in
DAML+OIL as ontologies. The KAoS Policy Ontologies (KPO) distinguish between
authorizations (i.e., constraints that permit or forbid some action) and obligations
(i.e., constraints that require some action to be performed, or else waive such a re-
quirement).

The following important features of KAoS are worth noting. First, the approach
does not assume that the policy-governed system is comprised of a homogeneous set
of components that have been designed in advance to work with KAoS services.
Rather the goal is to be able to have KAoS services work with arbitrarily written com-
ponents after the fact through support being added transparently at the platform level.
Second, insofar as possible, the KAoS framework supports dynamic runtime policy
changes and not merely static configurations determined in advance. Third, the

framework is extensible to a variety of execution platforms that might be simultane-
ously running with different enforcement mechanisms—in principle any platform for
which policy enforcement mechanisms may be written. Fourth, the KAoS framework
is intended to be robust and adaptable in continuing to manage and enforce policy in
the face of attack or failure of any combination of components.

Policy representation. Within the KAoS Policy Ontologies (KPO), a policy is an
instance of the appropriate policy type (i.e., positive or negative authorization; posi-
tive or negative obligation) that defines the associated values for its properties, such as
site of enforcement, priority, and update time stamp. Complex policy constructs such
as delegation are built directly out of the four basic policy types rather than through
special-purpose mechanisms (e.g., metapolicies). Through various property restric-
tions in the action type, the specific context for the action is defined (e.g., relations to
target and other situation entities). A given policy can also be variously scoped, for
example, either to individual components, to components of a given class, to compo-
nents belonging to a particular group, or to components running in a given physical
place or computational environment (e.g., host, VM). The current version of the core
ontologies in KPO consists of more than 100 classes and related properties that to-
gether define basic ontologies for actions, actors, groups, places, various entities re-
lated to actions (e.g., computing resources), and policies. Application developers
typically extend KPO with additional domain specific ontological elements. As the
application runs, classes and individuals corresponding to new policies and applica-
tion entities are also transparently added and deleted as needed. Figure 1 shows a
fragment of a communication policy example stating that the members of a domain
called A are permitted to communicate to members outside the domain using en-
crypted communication:

 <daml:Class rdf:ID=”ExampleAction">
 <rdfs:subClassOf rdf:resource="#EncryptedCommunicationAction" />
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#performedBy" />
 <daml:toClass rdf:resource="#MembersOfDomainA" />
 </daml:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#hasDestination" />
 <daml:toClass rdf:resource="#notMembersOfDomainA " />
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>
<policy:PosAuthorizationPolicy rdf:ID="Example">
 <policy:controls rdf:resource="#ExampleAction" />
 <policy:hasSiteOfEnforcement rdf:resource="#ActorSite" />
 <policy:hasPriority>10</policy:hasPriority>

<policy:hasUpdateTimeStamp>4237445645589</policy:hasUpdateTimeStamp>
</policy:NegAuthorizationPolicy>

Figure 1. Example of DAML policy representation in KAoS. Note that the use of the KPAT
GUI shields users from having to know and use DAML notations (see Figure 2).

Policy management features. KAoS provides the KAoS Policy Administration Tool
(KPAT)4 as a graphical interface (Figure 2). KPAT assists users in policy specifica-
tion, revision, and application. In addition, KPAT can be used to browse and load
ontologies and to analyze and deconflict newly defined policies. As policies, domains,
and application entities are defined using the KPAT GUI, the appropriate DAML
representations are generated automatically in the background and asserted into or
retracted from the system, insulating the user from having to know DAML or from
coding directly in a policy language as in Rei and Ponder. Policy templates allow
various classes of policy definitions to be defined as high-level domain-specific ab-
stractions. A rich set of queries is also available through KPAT or through program-
matic interfaces.

KAoS detects potential conflicts between policies at specification time, whenever a
user tries to add a new policy to the Directory Service. The KAoS algorithm for policy
conflict detection is able to detect conflicts between policies by relying on algorithms
implemented as extensions to Stanford’s Java Theorem Prover (JTP)
(http://www.ksl.stanford.edu/software/JTP/), which is integrated into KAoS. The
engine identifies policy conflicts by using the subsumption mechanisms among rele-
vant classes. KAoS tries to resolve conflicts by ordering policies according to their
precedence and, where necessary and desired, generating new harmonized policies [4,
5].

In addition, KAoS provides a complete deployment model that consists of some ba-
sic services and components such as the Domain Manager, the Directory Service, and
Guards. The KAoS framework is responsible for the management of domains of
agents and assures policy consistency at all the levels of the domain hierarchy. The
Directory Service is responsible for overall policy management, while Guards inter-
pret policies and pass them on to Enforcers, which are platform-specific components
that handle the actual policy enforcement. Before performing its function to allow or
forbid a given action, Enforcers for authorization policies must obtain an answer to the
question, “is a given action permitted or not?” or reasons of performance and robust-
ness. KAoS typically provides the answer locally through intelligent lookup rather
than inference. An action description is created by the Enforcer and passed to the
Guard, which traverses policy storage and checks to see if the given action instance is
in the range of actions controlled by any of its policies. If the authorization mechanism
does not find any policy applicable to the action description passed to it, it answers the
question consistent with whatever default authorization modality it has been given.
Domain defaults either correspond to a democracy, where everything is permitted that
is not explicitly forbidden, or a tyranny, where everything is forbidden that is not
explicitly permitted. Enforcement mechanisms for obligation policies work in a simi-
lar fashion, however rather than preemptively prohibiting actions, either they monitor
and respond as necessary to the performance or non-performance of obligation ac-
tions, or else they actively facilitate performance through types of enforcers called
enablers.

4 pronounced “KAY-pat”

Figure 2. KPAT hides the complexity of DAML through the use of a graphical user interface

and a generic DAML template. Additional language-specific templates or domain-specific
templates for common classes of policies can be easily defined.

3.2 Rei

Rei is a policy framework that integrates support for policy specification, analysis and
reasoning in pervasive computing applications [6, 7]. Rei has been used in conjunc-
tion with the Vigil security framework [6], Fujitsu’s Task Computing project, and with
the Groove workspace [http://www.groove.net] within the DARPA Genoa II program
[http://www.darpa.mil/iao/GenoaII.htm].

The Rei deontic concept-based policy language allows users to express and repre-
sent the concepts of rights, prohibitions, obligations, and dispensations. These con-
cepts correspond, respectively, to the conditions of positive and negative authoriza-
tion, and positive and negative obligation in KAoS and Ponder. In addition, Rei per-
mits users to specify policies that are defined as rules associating an entity of a man-
aged domain with its set of rights, prohibitions, obligations, and dispensations.

Rei relies on an application-independent ontology to represent the concepts of
rights, prohibitions, obligations, dispensations, and policy rules. This allows different
elements of a pervasive environment to understand and interpret Rei policies in the
correct way. The basic ontology also includes the description of actions. A general
action is described by its unique action identifier, the target objects on which the ac-
tion can be performed, a set of pre-conditions that must be true before the action can
be performed, and the effects that result from the action when it is performed.

Like KAoS, Rei allows users to extend the basic ontology with additional domain
dependent ontologies to express concepts and resources that are peculiar to certain
domains. For instance, if there is a need to model the specific action of printing a file
on a local printer, the general action class of the Rei basic ontology can be customized
to include more contextual information about specific printing options.

Unlike KAoS, which relies on the native APIs or message-passing facilities of the
underlying platform in which its services reside, the Rei language relies on a rich set
of speech act primitives to dynamically exchange rights and obligations between enti-
ties, such as the delegation, request, cancellation, or revocation of policies. Rei uses
meta-policies to resolve policy conflicts that are automatically detected by the Rei
policy engine.

Policy specification. Rei’s concepts of rights, permissions, obligations, dispensa-
tions, and policy rules are represented as Prolog predicates. No GUI equivalent of
KPAT is provided in the current version of Rei.5 Table 1 reports some examples of
Rei rights and policy specifications.

 Rei Policy Constructs Rei Policy Instance (example)

A PolicyObject (Action , Conditions) right (examineStudent , professor (Var))

B has (Subject , Policy Object) has (Var , right (examineStudent, professor (Var))
C action (ActionName, TargetObjects,

 Pre-Conditions, Effects)
action (examineStudent, Y, [student(Y)] , [])

Table 1. Example of Rei policy specification.

Row A describes a Policy Object that is used to model rights, permissions, obliga-
tions, and dispensations to perform a specific action under certain conditions. The
right column of Row A shows a Policy Object instance that defines the right to per-
form the examineStudent action when the condition on the variable Var is true—that
is, when Var is a professor. Row B illustrates the concept of a Policy Rule, which is
used to define the association between the subject of a policy and a Policy Object via
the has construct. In the example on Row B, the right defined in row A is now associ-
ated with a set of entities that are represented by the variable Var. These entities can
examine students only if they satisfy the professor(Var) condition, i.e., the entities
need to be professors. Finally, row C shows the definition of an action. In the right
column, the action examineStudent is performed on all the entities (Y variable) that are
students (student(Y)) without producing any effect on the system ([]). For additional
detail, see [6].

Rei also permits users to specify role-based access control policies or policies relat-
ing not only to individuals but also to groups of entities. For instance, in row B the
variable Var (all variables are denoted by a beginning capital letter) can be resolved
by a role or group based set of entities that resolve the condition of the Policy Object,
i.e. by all the members of the professor role or group. Roles and groups are not repre-
sented by specific constructs of the language and are not described in the basic Rei
ontology. In making this design decision, the developers of Rei argue that roles do not

5 A new GUI for Rei is under development in the form of a plug-in for Protégé.

receive a consistent interpretation in different applications, and may not always be
required. Policy programmers deal with a smaller set of constructs and code domain-
specific implementations of roles and groups when required.

Policy deployment model. The Rei framework provides a policy engine that reasons
about the policy specifications. The engine accepts policy specification in both the Rei
language and in RDF-S, consistent with the Rei ontology. Specifically, the engine
automatically translates the RDF specification into triples of the form (subject, predi-
cate, object). The engine also accepts additional domain-dependent information in any
semantic language that can then be converted into this recognizable form of triple. The
engine is consistent and complete [6] and allows queries according to the Prolog lan-
guage about any policies, meta-policies, and domain dependent knowledge that have
been loaded in its knowledge base.

The Rei policy engine can detect modality conflicts among policies. In particular,
the engine marks two policies as conflicting if they are of conflicting modalities and if
there is an overlap in subject, target, and action. In order to resolve the detected con-
flicts, Rei provides the possibility to specify meta-policies that define priorities on
policies, and/or set precedence relations between policy modalities.

Rei decentralizes the policy control to system entities. Some constructs allow speci-
fication of speech acts to exchange policies between entities and comprehensive dele-
gation management allows the rights of entities to be configured dynamically.

The Rei framework does not provide an enforcement model. In fact, the policy en-
gine has not been designed to enforce the policies but only to reason about them and
reply to queries. For example, the engine can say if an entity has the right or obliga-
tion to perform a certain action, but then it does not include mechanisms to ensure
enforcement of the policy by, for example, forbidding the policy subject from per-
forming unauthorized actions or by forcing the entity to execute required actions. Thus
it provides limited or no protection from malicious or non-compliant components or
agents.

3.3 Ponder

Ponder is a declarative, object-oriented language that supports the specification of
several types of management policies for distributed object systems and provides
structuring techniques for policies to cater for the complexity of policy administration
in large enterprise information systems [1, 9, 14]. It has been widely deployed in many
applications.

Ponder distinguishes between basic and composite policies. A basic policy is con-
sidered a rule governing the choices in system behaviour and is specified by a declara-
tion between a set of subjects and a set of targets. These sets are used to define the
managed objects that the policy operates over. Ponder uses the term subject to refer to
users, principals, or automated manager components, which have management respon-
sibility (i.e., have the authority to initiate a management decision). A subject can oper-
ate on target objects (resources or service providers) by invoking methods visible in

the target interface. The fundamental policy types in Ponder are obligations and au-
thorizations. For example, obligation policies define “the actions that policy subjects
must perform on target entities when specific relevant events occur” while authoriza-
tion policies define “what operations a subject is authorized to do on target objects”
[14].

Composite policies allow the basic policies relating to organizational units to be
grouped. Examples of composite policies are role and relationships policies. In Pon-
der, roles are groups of policies governing the behavior of the same subject by speci-
fying its rights and duties while relationships group the policies defining the rights and
duties of roles towards each other.

Ponder policies rely on the key concept of management domains. Domains provide
a means of grouping objects on which policies apply and can be used to partition the
objects in a large system as desired. Ponder policy subjects and targets are defined in
terms of domain scope expressions that allow the combination of domains to form
composite set of objects, but also to identify a single named object within a single
domain.

Policy specification. Figure 3 illustrates an example of a Ponder authorization policy.
The policy specifies that the professor principals have read access to all the exercise
files of their students only during the opening hours of the school, i.e. from 7 am to 7
pm and from Monday to Friday.

type auth+ FileAccess (subject professor,
 target exerciseFiles)
 {
 action read;
 when
 Time.between(0700, 1900) and
 Time.between(‘mon’, ‘fri’);
 }
inst auth+ P1 = FileAccess (“professor/Green”,
 ”NodeServer/StudentFiles”);

Figure 3. Ponder authorization policy specification

A type policy definition introduces a new user-defined policy type, from which one or
more policy instances of that type can be created. Policy types can also be parameter-
ized and the instances created with context-specific parameters, for example, the sub-
ject and target sets can be passed as actual parameters. A policy instance declaration
creates an instance of a user-defined policy type. P1 is a policy instance that author-
izes the professor principal called Green to access the student exercise files hosted on
the NodeServer. The read action is a method of the target interface and can be neither
refined nor specialized. The when clause is used to deny read access to the files during
school closing hours.

Note that Ponder does not currently support the specification of default rules for
policies. For example, if an authorization policy is not specified for an action, the
default constraint on behavior (i.e., whether to permit or forbid the action) is imple-
mentation dependent.

Policy deployment model. Ponder provides various graphical tools for editing, updat-
ing, removing, and browsing Ponder policies [20]. There are also tools for syntactic
and semantic analysis of policy specifications and for transforming Ponder language
specifications directly into XML or Java code that can be interpreted at runtime.

In addition, the developers of Ponder have implemented a prototype conflict detec-
tion tool to detect overlaps and conflicts between policies. The tool distinguished
between modality conflicts and application-specific conflicts [8]. Similar to KAoS and
Rei, the former are inconsistencies in the policy specification that may arise among
policies with modalities of opposite signs that refer to the same subjects, targets, and
actions (e.g., conflicts between permissions and prohibitions or between obligations
and prohibitions). However, the lack of an ontology limits its ability to deal with sub-
jects, actions, and targets at varying levels of abstraction. The latter are inconsisten-
cies between the policy content and external criteria (e.g. conflict between an obliga-
tion to access a resource and a limitation on the resource availability). More recent
work on policy analysis in Ponder has focused on using abductive reasoning together
with an event calculus representation of the policies to identify and detect the policy
conflicts [21].

Ponder proposes a general-purpose deployment model [22]. At the end of the pol-
icy specification the policy is compiled by the Ponder compiler into a Java class and
then represented at runtime by a Java object. The downside is that runtime changes to
policy are not possible. The distribution and enforcement model distinguishes between
authorization and obligation policies. Authorization policy objects are distributed
closer to the target objects of the policy where an Access Controller Agent provides
their runtime interpretation and enforcement by allowing or rejecting access requests
to controlled target resources. Obligation policy objects are distributed closer to the
subject objects of the policy where a Policy Management Agent provides their run-
time interpretation and enforcement at policy-relevant event occurrence. Ponder pro-
vides the specification of the interfaces for the enforcement agents, i.e., for the Access
Controller and Policy Management Agent, but no implementation is provided. There
are some systems that implement the Ponder policy deployment model in different
application domains [23].

4 Case-study: Controlling Communication

This section compares the policy frameworks described in Section 3 with the main
goal of highlighting their differences and of outlining some general key requirements
for a comprehensive semantic approach to policies. The case of a communication
policy among agents is considered for purposes of comparison. Communication in
multi-agent systems has proven to be a very common application of policy. Let us
consider the case of a multi-agent system modeling an academic institute where there
is the need to rule the communication between professors and their students, both
represented as agents. In the following sections we will use a policy that states that
“professors are permitted to communicate the final examination grade to their stu-
dents using an encrypted communication only after the approval of the institute’s

director” as a running policy example to show how the three approaches represent,
analyze and deploy it.

4.1 Policy Representation

Table 2 shows the different representations of the policy example in KAoS, Rei and
Ponder.

KAoS exploits a DAML-based representation of the policy example. In particular it
is modeled as an instance of a positive authorization policy type with associated prop-
erties set to the desired values. For example, the performedBy property represents the
sender and its value is restricted to the “AgentProfessors”, while the siteOfEnforce-
ment value is set to the “SubjectSite” meaning that the enforcement mechanisms will
be associated with the professor agents that are the subject of the policy.

In Rei, the policy specification is based on a Prolog-like representation. The policy
is modeled by means of three basic constructs. In particular, the action construct mod-
els the “gradeCommunication” action that involve “Professors” and “Students”, the
right construct models the right of executing this action when the set of policy condi-
tions are verified, and finally the has construct assigns this right to the “Professors”.

The exploitation of a Ponder authorization policy type for mapping the communica-
tion policy requires the identification of the resources that need protection and to
know in advance their specific names and interfaces. For example, in the specification
we assume that the resource to be protected is the communication channel (the
“CommunicationChannel” target resource) and that the action that a policy subject can
exploit to send data is the “communication” method of the “CommunicationChannel”
object interface.

A major advantage of using KAoS for representing the policy is that any policy
element (groups, actors, actions, action properties, conditions of applicability) is de-
scribed by an appropriate ontology at the desired level of abstraction. KAoS policy
specification is split into two parts. The first part defines the aspects of the controlled
action. This part, represented within a single DAML class, is self-contained and in-
cludes information about the type of action, the class of subjects performing this ac-
tion and additional context information. In comparison, other policy specification
approaches separate information about the action type from the class of subjects, mak-
ing analysis of the policy more complex. KAoS’ approach allows users to analyze and
compare action classes independently of policies and to apply the policy management
information (e.g., policy modality, precedence), which is included in the second part
of the policy specification, at the end of the decision process. Finally, KAoS provides
a rich set of predefined ontologies that can be extended to accommodate specific ap-
plication requirements and hides the potential complexity of policy representation and
languages behind the KPAT graphical user interface.

In Rei the specification is more readable and compact than a semantic web lan-
guage such as DAML. On the other hand, the Prolog-like syntax policy specification
is not so easy for users with limited expertise in logic languages.

 Finally, the Ponder policy specification is easy to understand thanks to its declara-
tive specification. However, the low level of abstraction provided in Ponder by

method calls may be a limitation to its use in multi-agent systems, where support for
dynamic runtime changes and the need for simultaneously varying levels of descrip-
tion are usually important requirements.

KAoS
 <?xml version='1.0'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:xsd ="http://www.w3.org/2000/10/XMLSchema#"
 xmlns:policy="http://ontology.coginst.uwf.edu/Policy.daml#"
 xmlns="http://ontology.coginst.uwf.edu/ExamplePolicies/PolicyExample.daml#">
<daml:Ontology rdf:about="">
 …..
<daml:Class rdf:ID="ExaminationGradePolicyAction">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="http://ontology.coginst.uwf.edu/Action.daml#EncryptedCommunicationAction"/>
 <daml:Restriction>
 <daml:onProperty rdf:resource="http://ontology.coginst.uwf.edu/Action.daml#performedBy"/>
 <daml:toClass rdf:resource="http://ontology.coginst.uwf.edu/ActorClasses.daml#AgentProfessors"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="http://ontology.coginst.uwf.edu/Action.daml#hasDestination"/>
 <daml:toClass rdf:resource="http://ontology.coginst.uwf.edu/ActorClasses.daml#AgentStudents"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="http://ontology.coginst.uwf.edu/ Action.daml#hasApproval"/>
 <daml:toClass
 rdf:resource="http://ontology.coginst.uwf.edu/ActorClasses.daml#AgentInstituteDirector"/>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>
 <policy:PosAuthorizationPolicy rdf:ID="ExaminationGradePolicy">
 <policy:controls rdf:resource="#ExaminationGradePolicyAction"/>
 <policy:hasSiteOfEnforcement rdf:resource="http://ontology.coginst.uwf.edu/Policy.daml#SubjectSite"/>
 <policy:hasPriority>10</policy:hasPriority>
 <policy:hasUpdateTimeStamp>446744445544</policy:hasUpdateTimeStamp>
 </policy:PosAuthorizationPolicy >

Rei

Action name (URI) Target Objects

Pre-conditions

Effects

Condition

action (gradesCommunication, [Stud, Prof], [],
communicated(‘grade', Stud, Prof))

has(Prof,
right(gradesCommunication,

(action(gradesCommunication, [Stud, Prof], X,Y),
professor(Prof), student(Stud, Prof),
commType('encrypted'), dataType('Grade'),
approval(Prof,instituteDirector)))

Subject Action

Policy
Object

Policy
rule

Ponder

domain prof = /SysEntities/Agents/ProfessorAgents;
domain stud = /SysEntities/Agents/StudentsAgents;

inst auth+ ExamGradeComm {
subject s= prof;
target t = /SysEntities/SysServices/CommunicationChannel;
action t.communication (“Encrypted”, data, destination) ;
when data.getType = “Grade”

&& destination == (stud -> select (st | st.professor == s))
&& s.receivedApproval(s.getInstituteDirector()) == ‘true’ ;

}

Table 2. Policy Specification in KAoS, Rei, and Ponder

4.2 Policy Reasoning

In KAoS, various inferences can be performed for a variety of purposes, such as
detecting and harmonizing conflicting policies (e.g., is any negative authorization
policy denying the same action or a subclass of the same action?), disclosing related
policies (e.g. which policies deal the approval of the institute director?), or reasoning
about future actions based on knowledge of policies in force (e.g. which entity can
read from or write to the database of examination grades?). The power and efficiency
of description logics can be leveraged to their full extent, and the use of JTP allows
going beyond description logic where necessary. Queries can also be written in Rei
through its expressive query language. Rei relies on the Prolog reasoning engine to
analyze the policies and can reason over domain-dependent ontologies by automati-
cally translating the RDF policies into triples. In KAoS, this conversion is hidden from
the users by Stanford’s Java Theorem Prover that converts the knowledge base into
triples before reasoning over them and providing only the end results. In Rei, the users
have the ability to directly manage the intermediate form. For example, it is possible
to create a policy by using the conversion to triple of any instance of a domain de-
pendent class. Moreover, users have the capability to access the policy instances in
this form by submitting some Prolog queries to the policy engine.

The increased representational power of DAML/OWL over RDF-S allows more
powerful forms of policy inference to be used by developers and users. Moreover,
because all aspects of KAoS representation are encoded purely in DAML/OWL, any
third-party tool or environment supporting DAML/OWL can perform specialized
analyses of the full knowledge base completely independent of KAoS itself, thus eas-
ing integration with an increasingly sophisticated range of new tools and language
enhancements in the future.

Finally, Ponder can detect modality and application specific conflicts in policies,
such as conflicts of duty. Ponder policy rules are translated into an event calculus
representation that describes the semantics of the policy language. Abductive reason-
ing techniques are exploited to analyze the policy specifications to identify existing
conflicts and provide explanations on how they might arise [21].

4.3 Policy Deployment

In KAoS, the abstract representation of actions (in contrast to the method calls in
Ponder) is both a boon and a bane. On the one hand, this abstraction allows KAoS to
be adapted for just about any platform that has the requisite enforcement hooks. On
the other hand, deployment in any given platform requires the availability of a specific
enforcer for the policy Action Class, i.e., in our example for the EncryptedCommuni-
cationAction class. If such an enforcer does not already exist, it must be implemented.
Its design is usually a non trivial task and requires programmers to have a deep under-
standing of the action class and its mapping to the platform. As libraries of enforcers
for common actions across platforms are developed, this will become less and less of
an issue.

Rei, as explained in Section 3.2, does not provide any enforcement support and this
is one of the main drawbacks of exploiting this language for practical applications. In
addition, even if the engine accepts ontology-based policy specification, the main
policy management is over the Rei constructs. This is a constraint when compared to
KAoS that manages the policy in its original form, leaving to the implementing plat-
forms the possibility to choose the most appropriate run-time representation.

In Ponder, the main advantage of modeling policy actions at a low level of abstrac-
tion is that they can be directly implemented in Java with little additional effort. This
is the reason for its wide adoption in many existing systems.6 For example, the com-
munication policy example can be simply implemented by a proxy object with the
same interface of the CommunicationChannel object. When the ‘communication’
method is invoked by the policy subject, the proxy grants/denies the communication
permission according to the caller identity and to the specified constraint.

For the sake of clarity, Table 3 reports and synthesizes some of the features of the

three approaches discussed in the previous Sections.

Graphical editor and
compiler

No**
** a GUI is being developed for
the next Rei version

KPAT – Graphical editor
for ontology and policy
management

Tools for
policy

specification

Event calculus
representation

Prolog engineJava Theorem ProverReasoning
support

Java interfaces for
enforcement agents are
provided

Action execution is outside
the Rei engine

Need to write the code of
appropriate enforcers and
to insert them in entities to
control **
** Policy automation being
explored for the next version

Enforcement
mechanisms

Ontology can be extended
with domain dependent
descriptions of local entities

Rei: (Prolog-like syntax +
RDF-S)

Yes

Rei

Management domain as
a structuring technique
for partitioning complex
object systems

Ontology can be extended
with domain dependent
descriptions of local
entities

Flexibility

Ponder (declarative
specification)

DAML/OWL Specification
language

NoYesOntology-
based

PonderKAoS

Graphical editor and
compiler

No**
** a GUI is being developed for
the next Rei version

KPAT – Graphical editor
for ontology and policy
management

Tools for
policy

specification

Event calculus
representation

Prolog engineJava Theorem ProverReasoning
support

Java interfaces for
enforcement agents are
provided

Action execution is outside
the Rei engine

Need to write the code of
appropriate enforcers and
to insert them in entities to
control **
** Policy automation being
explored for the next version

Enforcement
mechanisms

Ontology can be extended
with domain dependent
descriptions of local entities

Rei: (Prolog-like syntax +
RDF-S)

Yes

Rei

Management domain as
a structuring technique
for partitioning complex
object systems

Ontology can be extended
with domain dependent
descriptions of local
entities

Flexibility

Ponder (declarative
specification)

DAML/OWL Specification
language

NoYesOntology-
based

PonderKAoS

Table 3. Features of KAoS, Rei, and Ponder

4.4 Discussion

As the previous sections made clear, each form of policy representation exhibits pros
and cons and thus the choice of an approach should be driven by the characteristics of
the application domain and by the application requirements.

However, our experience to date seems to indicate quite clearly that, apart from the
specific considerations of the representation employed, the adoption of Semantic Web
representations provide more advantages than drawbacks. Table 4 compares generic
Semantic Web approaches to policy specification (KAoS, Rei) to the Ponder approach

6 The automatic generation of native Java VM policies directly from KPAT is under develop-

ment in KAoS.

that is used as a representative of the non-ontology-based languages. The comparison
takes into consideration the basic language requirements pointed out in Section 3.

Ontologies simplify the task of governing the behavior of complex environments.
The possibility of representing entities and behaviors at multiple levels of abstraction
improves the global expressiveness, allowing flexibility in dealing with several kinds
of contexts at different level of specifications. The use of ontologies permits the policy
framework to be easily extended simply adding new concepts to the ontology. In tradi-
tional languages this task is usually much trickier. For example in Ponder the specifi-
cation of the communication policy example requires the non-trivial effort to extend
the policy language or to convert the policy into a resource control policy. In addition,
the possibility of modeling policies at a high level of abstraction allows users to focus
their attention more on high-level management requirements than on implementation
details, such as the method names in Ponder.

An ontology-based description of the policy enables the system to use concepts to
describe the environments and the entities being controlled, thus simplifying their
description and improving the analyzability of the system. Policy frameworks can take
advantage of this powerful feature, such as policy conflict detection and harmoniza-
tion. In addition, ontology-based approaches simplify access to policy information,
with the possibility of dynamically calculating relations between policies and the envi-
ronment, entities, or other policies based on ontology relations rather than fixing them
in advance. Like databases, it is possible to access the information provided by query-
ing the ontology according to the ontology schema. This is an advantage in compari-
son to traditional languages that provide only pre-defined queries to access informa-
tion and static representations of policy. How to design the ontology is an application
dependent problem. As in database design, ontologies should be designed and ex-
tended consistent with the application context and optimized for the most common
queries. Finally, ontologies can also simplify the sharing of policy knowledge among
different organizations and applications, thus increasing the possibility for entities to
negotiate policies and to agree on a common set of policies.

However, the adoption of ontologies for policy specification requires addressing
some technical difficulties.

Semantic web languages used for ontology representation still present a complex
syntax, long declarative description, and hyperlinks and references to external re-
sources that make the code very difficult to read (e.g., compare the readability of a
Ponder policy with a DAML policy). To improve the ease of use of these languages,
graphical interfaces or other tools for policy specification should be adopted. For
example, KPAT provides a graphical interface for policy specification and manage-
ment but such tool always exacts a price in continued development to keep up with
significant changes in foundational ontologies; while Rei provides a simplified lan-
guage for policy specification that hides the complexity of the semantic representation
even if it burdens the user with the task of learning an additional language.

Finally, enforceability is a critical aspect for semantic web languages. Ontology-
based policy specification can be difficult to implement in comparison to other policy
specification such as Ponder, because of the high level specification of ontology-based
policies can be far removed from the concrete implementation of the policy enforce-
ment on the systems. Usually the gap between the specification and the implementa-

tion of policies cannot be completely overcome in an automated manner, but has to be
resolved to a greater or lesser degree by human programmers consistent with the ca-
pabilities and features of each platform. For example, independent of the semantic
representation adopted, the implementation of an enforcer for the policy example
requires the enforcers to locate the Professor agents in the system to control, to inter-
cept any attempt to send data to Student agents (this task might also require the addi-
tion of code in the agent), and to query the policy repository with an appropriate de-
scription of the action. Enforcement code generation facilities and libraries of en-
forcement mechanisms adapted to specific platforms are among the most important
features for policy management frameworks to provide to enable their widespread
implementation.

Enforceability

Ease-of-use

Analyzability

Expressiveness

Ponder **
Semantic web languages
for policy specification

Enforceability

Ease-of-use

Analyzability

Expressiveness

Ponder **
Semantic web languages
for policy specification

Multiple levels of abstraction

Capable of representing concepts and
behavior of any complex environment

Low level of abstraction: object level

Capable of controlling specific sorts of
behavior within object-oriented systems

Extensibility supported by object-
oriented inheritance at compile-time

Need of specialized tools to assist
unskilled users with policy specification
and interpretation

Easy to extend policy ontology at
runtime with new concepts

Language specifically designed for simple
policy specification and direct readability

Ontology representation simplifies and
directly supports policy reasoning, conflict
detection and harmonization

Simplified access to policy information by
querying the ontology

Policy sharing among heterogeneous
systems requires an agreement on a
common ontology

Conflict detection requires transforming
policy specification into an event calculus
representation

Access to single policy object by API –
Access to policy repository to be designed

Policy sharing among heterogeneous
systems requires agreement on interfaces

High-level specification requires skilled
programmers or sophisticated policy
automation mechanisms for enforcement

Detailed specifications can be directly
mapped into policy enforcement
mechanisms

** used as example of non-semantic web language

Table 4. Comparison between semantic web and traditional languages

5 Conclusion

Policy based approaches to systems management are of particular importance because
they allow the separation of the rules that govern the behavior of a system from the
functionality provided by that system [11]. Research into policy based systems man-
agement has focused on languages for specifying policies and architectures for manag-
ing and deploying policies in distributed environments and complex systems, such as
multi-agent systems. This paper has described similarities and differences among three
important policy management approaches: KAoS, Rei and Ponder.

Existing approaches have generated divergent solutions that tend to be best suited
for particular ranges of applications and discourage a common approach for all situa-
tions. Ideally, a common approach to specifying and deploying policy for the man-

agement aspects of all application domains is desirable to simplify policy analysis and
reduce policy inconsistencies and conflicts and to facilitate policy reuse across various
systems. Notwithstanding this ideal, the concept of a universal programming language
has never been successful and it is not clear why a common approach should succeed
for policy specification and deployment. Although we hope to conduct more formal
and thorough analyses in the future, our examination of the issues to date indicate
promising advantages in the adoption of Semantic Web languages for policy represen-
tation and reasoning.

References

1. N. Damianou, N. Dulay, E. Lupu, M. Sloman: The Ponder Policy Specification Language. In
proceedings of Workshop on Policies for Distributed Systems and Networks (POLICY
2001). Springer-Verlag, LNCS 1995, Bristol, UK, (2001)

2. J. M. Bradshaw, P. Beautement, L. Bunch, S. V. Drakunov, P. Feltovich, R.R. Hoffman, R.
Jeffers, M. Johnson, S. Kulkarni, A.K. Raj, N. Suri, A. Uszok: Making Agents Acceptable
to People. In N. Zhong and J. Liu (Eds.), Intelligent Technologies for Information Analysis:
Advances in Agents, Data Mining, and Statistical Learning, Berlin: Springer Verlag, in
press, (2003)

3. M. Johnson, P. Chang, R. Jeffers, J. Bradshaw, V-W. Soo, M. Breedy, L. Bunch, S. Kul-
karni, J. Lott, N. Suri, A. Uszok: KAoS semantic policy and domain services: An applica-
tion of DAML to Web-Services-based grid architectures. Proceedings of the AAMAS 03
Workshop on Web Services and Agent-Based Engineering, Melbourne, Australia, July,
(2003)

4. A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. Johnson, S.
Kulkarni, J. Lott: KAoS policy and domain services: Toward a description-logic approach to
policy representation, deconfliction, and enforcement. In Proceedings of IEEE Fourth Inter-
national Workshop on Policy (Policy 2003). Lake Como, Italy, 4-6 June, Los Alamitos, CA:
IEEE Computer Society, pp. 93-98, (2003)

5. J. M. Bradshaw, A. Uszok, R. Jeffers, N. Suri, M. Burstein: Representation and reasoning for
DAML-based policy and domain services in KAoS and Nomads. Proceedings of the
Autonomous Agents and Multi-Agent Systems Conference (AAMAS 2003). Melbourne,
Australia, New York, NY: ACM Press, pp. 835-842, (2003)

6. L. Kagal, T. Finin, A. Johshi: A Policy Language for Pervasive Computing Environment. In
Proceedings of IEEE Fourth International Workshop on Policy (Policy 2003). Lake Como,
Italy, 4-6 June, Los Alamitos, CA: IEEE Computer Society, pp. 63-76, (2003).

7. L. Kagal: Rei: A Policy Language for the Me-Centric Project. HP Labs Technical Report,
HPL-2002-270, (2002)

8. E. C. Lupu, M. Sloman: Conflicts in policy-based distributed system management. IEEE
Transaction on Software Engineering, Vol. 25, No. 6, (1999)

9. M. Sloman: Policy Driven Management for distributed Systems. Plenum Press Journal of
Network and Systems Management, Vol. 2, No. 4, (1994), 333-360

10. P. Feltovich, J. M. Bradshaw, R. Jeffers, A. Uszok: Order and KAoS: Using policy to
represent agent cultures. In Proceedings of the AAMAS 03 Workshop on Humans and
Multi-Agent Systems. July, Melbourne, Australia

11. S. Wright, R. Chadha, G. Lapiotis (eds.): Special Issue on Policy Based Networking. IEEE
Network, Vol. 16, No. 2, March, (2002), 8-56

12. J. Fritz Barnes, R. Pandey: CacheL: Language Support for Customizable Caching Policies.
In Proceedings of 4th Interantional Web Caching Workshop, San Diego, CA, (1999)

13. J. Hoagland: Specifying and Implementing Security Policies Using LaSCO, the Language
for Security Constraints on Objects. Ph.D. dissertation, UC Davis, (2000)

14. N. Damianou, N. Dulay, E. C. Lupu, M. Sloman: Ponder: A Language for Specifying Secu-
rity and Management Policies for Distributed Systems. Imperial College, UK, Research Re-
port Department of Computing 2001, (2000)

15. The IETF Policy Framework Working Group: Charter available at
http://www.ietf.org/html.charters/policy-charter.html

16. D. N. Allsopp, P. Beautement, J. M. Bradshaw, E. H. Durfee, M. Kirton, C.A. Knoblock,
N. Suri, A. Tate, C. W. Tompson: Coalition Agents Experiment: Multiagent Cooperation in
International Coalitions. IEEE Intelligent Systems, Vol. 17, No. 3, (2002), 26-35

17. J. M. Bradshaw, M. Sierhuis, A. Acquisti, P. Feltovich, R. Hoffman, R. Jeffers, D. Pres-
cott, N. Suri, A. Uszok, R. Van Hoof: Adjustable autonomy and human-agent teamwork in
practice: An interim report on space applications. In H. Hexmoor, R. Falcone, & C.
Castelfranchi (Ed.), Agent Autonomy. Dordrecht, The Netherlands: Kluwer, (2003), pp.
243-280

18. N. Suri, J.M. Bradshaw, M.R. Breedy, P.T. Groth, G.A. Hill, R. Jeffers: Strong Mobility
and Fine-Grained Resource Control in NOMADS. In Proceedings of the 2nd International
Symposium on Agents Systems and Applications and the 4th International Symposium on
Mobile Agents (ASA/MA2000). Springer-Verlag, (2000)

19. M. Kahn, C. Cicalese: CoABS Grid Scalability Experiments. O.F. Rana (Ed.), 2nd Interna-
tional Workshop on Infrastructure for Scalable Multi-Agent Systems at the 5th International
Conference on Autonomous Agents. Montreal, CA, New York: ACM Press, (2001)

20. N. Damianou, N. Dulay, E. Lupu, M. Sloman, T. Tonouchi: Tools for Domain-based Policy
Management of Distributed Systems. In Proceedings of Network Operations and Manage-
ment Symposium (NOMS'02). IEEE Press, Florence, Italy, (2002), 203 -217

21. A. K. Bandara, E. Lupu, A. Russo: Using Event Calculus to Formalise Policy Specification
and Analysis. In Proceedings of 4th IEEE workshop on Policies for Distributed Systems and
Networks (POLICY 2003), Lake Como, Italy, (2003)

22. N. Dulay, E. Lupu, M Sloman, N. Damianou: A Policy Deployment Model for the Ponder
Language. In Proceedings of IEEE/IFIP International Symposium on Integrated Network
Management (IM’2001). IEEE Press, Seattle, May 2001

23. R. Montanari, G. Tonti, C. Stefanelli: A Policy-based Mobile Agent Infrastructure. In
Proceedings of 2003 Symposium on Applications and the Internet (SAINT 2003). IEEE
Press, Orlando, Florida, US, (2003), 370-379

