
Policy and Contract Management for Semantic Web Services

Andrzej Uszok, Jeffrey M. Bradshaw, Renia Jeffers, Matthew Johnson
Institute for Human and Machine Cognition (IHMC), 40 S. Alcaniz, Pensacola, FL 32501, USA

{auszok, jbradshaw, rjeffers, mjohnson}@ihmc.us

Austin Tate, Jeff Dalton, Stuart Aitken
Artificial Intelligence Applications Institute, University of Edinburgh, Edinburgh EH8 9LE, UK

{a.tate, j.dalton, s.aitken}@ed.ac.uk

Abstract

This paper summarizes our efforts to develop capabilities
for policy and contract management for Semantic Web
Services applications. KAoS services and tools allow for the
specification, management, analyzes, disclosure and
enforcement of policies represented in OWL. We discuss
three current Semantic Web Services applications as
examples of the kinds of roles that a policy management
framework can play: as an authorization service in grid
computing environments, as a distributed policy
specification and enforcement capability for a semantic
matchmaker, and as a verification tool for services
composition and contract management.

Introduction

Despite rapid advances in Web Services, the demanding
requirements of the user community continue to outstrip
currently available technology solutions. To help close this
gap, advocates of Semantic Web Services have begun to
define and implement new capabilities
(http://www.swsi.org/). These new capabilities are intended
to more fully harness the power of Web Services through
explicit representations of the semantics underlying Web
resources, and the development of intelligent Web
infrastructure capable of fully exploiting them to provide
services that can be effectively used not only by people but
also by software agents [12]. Semantic Web Languages
such as OWL extend RDF to allow users to specify
ontologies composed of taxonomies of classes and
inference rules. Extending the initial use of the Web by
people, agents will increasingly use the combination of
semantic markup languages and Semantic Web Services to
understand and autonomously manipulate Web content in
significant ways. Agents will discover, communicate, and
cooperate with other agents and services—and, as
described in this paper, will rely on policy-based
management and control mechanisms to ensure that human-
imposed constraints are respected.

Policies and Semantic Web Services

Policies, which constrain the behavior of system
components, are becoming an increasingly popular
approach to dynamic adjustability of applications in

academia and industry (http://www.policy-workshop.org/).
Elsewhere we have pointed out the many benefits of policy-
based approaches, including reusability, efficiency,
extensibility, context-sensitivity, verifiability, support for
both simple and sophisticated components, protection from
poorly-designed, buggy, or malicious components, and
reasoning about their behavior [2]. Policies have important
analogues in animal societies and human cultures [6].
Policy-based network and distributed system management
has been the subject of extensive research over the last
decade (http://www-dse.doc.ic.ac.uk/Research/policies/)
[19]. Policies are often applied to automate network
administration tasks, such as configuration, security,
recovery, or quality of service (QoS). In the network
management field, policies are expressed as sets of rules
governing choices in the behavior of the network. There are
also ongoing standardization efforts toward common policy
information models and frameworks. The Internet
Engineering Task Force, for instance, has been
investigating policies as a means for managing IP-
multiservice networks by focusing on the specification of
protocols and object-oriented models for representing
policies (http://www.ietf.org/html.charters/policy-
charter.html).
The scope of policy management is increasingly going
beyond these traditional applications in significant ways.
New challenges for policy management include:

• Sources and methods protection, digital rights
management, information filtering and
transformation, and capability-based access;

• Active networks, agile computing, pervasive and
mobile systems;

• Organizational modeling, coalition formation,
formalizing cross-organizational agreements;

• Trust models, trust management, information
pedigrees;

• Effective human-machine interaction: interruption
and notification management, presence
management, adjustable autonomy, teamwork
facilitation, safety; and

• Support for humans trying to retrieve, understand,
and analyze all policies relevant to some situation.

Multiple approaches for policy specification have been
proposed that range from formal policy languages that can

be processed and interpreted easily and directly by a
computer, to rule-based policy notation using an if-then-
else format, to the representation of policies as entries in a
table consisting of multiple attributes.
In the Web Services world, standards for SOAP-based
message security1 and XML-based languages for access
control (e.g., XACML2) have begun to appear. However
the immaturity of the current tools along with the limited
scope and semantics of the new languages make them less-
than-ideal candidates for the sorts of sophisticated Web-
based applications its visionaries have imagined in the next
ten years [7].
The use of XML as a standard for policy expression has
both advantages and disadvantages. The major advantage
of using XML is its straightforward extensibility (a feature
shared with languages such as RDF and OWL, which are
built using XML as a foundation). The problem with mere
XML is that its semantics are mostly implicit. Meaning is
conveyed based on a shared understanding derived from
human consensus. The disadvantage of implicit semantics
is that they are rife with ambiguity, promote fragmentation
into incompatible representation variations, and require
extra manual work that could be eliminated by a richer
representation. However Semantic Web-based policy
representations, such as those described in this paper, could
be mapped to lower level representations if required by an
implementation by applying contextual information.
Some initial efforts in the use of Semantic Web
representations for basic security applications
(authentication, access control, data integrity, encryption)
of policy have begun to bear fruit. For example, Denker et
al. [5] have integrated a set of ontologies (credentials,
security mechanisms) and security extensions for Web
Service profiles with the CMU Semantic Matchmaker [13]
to enable security brokering between agents and services.
Future work will allow security services to be composed
with other services. Kagal et al. [10] are developing Rei, a
Semantic Web language-based policy language that is
being used as part of this and other applications.
In another promising direction, Li, Grosof, and
Feigenbaum [11] have developed a logic-based approach to
distributed authorization in large-scale, open, distributed
systems.

KAoS Policy and Domain Management Services

KAoS services and tools allow for the specification,
management, conflict resolution, and enforcement of
policies within the specific contexts established by complex
organizational structures represented as domains [2; 3; 18].
While initially oriented to the dynamic and complex
requirements of software agent applications, KAoS services
have been extended to work equally well with both agent

1 e.g., http://www-106.ibm.com/developerworks/webservices/library/ws-
secure/
2 http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security

and traditional clients on a variety of general distributed
computing platforms.
KAoS uses ontology concepts (encoded in OWL) to build
policies. During its bootstrap, KAoS first loads a KAoS
Policy Ontology (KPO) defining concepts used to describe
a generic actors’ environment and policies within this
context (http://ontology.ihmc.us/) and then, on top of it, an
additional ontology is loaded, extending concepts from the
generic ontology, with notions specific to the particular
controlled environment.
The KAoS Policy Service distinguishes between
authorizations (i.e., constraints that permit or forbid some
action) and obligations (i.e., constraints that require some
action to be performed when a state- or event-based trigger
occurs, or else serve to waive such a requirement) [4].
Other policy constructs (e.g., delegation, role-based
authorization) are built out of the basic primitives of
domains plus these four policy types.
The concept of an action is central to the definition of
policies in KAoS (Fig. 1). Action is defined as an
ontological class used to classify instances of actions that
are intended or currently underway. If the particular action
instance is of the type of the action class associated with
the given policy then this policy is applicable to the current
situation.

Figure 1. Graphical interface of the OWL policy editor

The use of OWL enables reasoning about the controlled
environment, policy relations and disclosure, policy
conflict detection, and harmonization, as well as about
domain structure and concepts exploiting the description
logic subsumption and instance classification algorithms.
Conflicting policies can be identified and, if desired,
harmonized through KAoS use of algorithms relying on the
inference capabilities of Stanford’s Java Theorem Prover
(JTP; http://www.ksl.stanford.edu/software/JTP/).
A comparison of KAoS, Rei, and Ponder approaches to
policy can be found in [17]. We highlight a few important
features below.
Homogeneous representation. Because all aspects of KAoS
representation are encoded purely in OWL, any third-party
tool or environment supporting OWL can perform

specialized analyses of the full knowledge base completely
independently of KAoS itself, thus easing integration with
an increasingly sophisticated range of new OWL tools and
language enhancements in the future.
Maturity. Over the past few years, KAoS has been used in a
wide range of applications and operating environments.
Comprehensiveness. Unlike many approaches that deal
with only simple forms of access control or authorization,
KAoS supports both authorization and obligation policies.
In addition, a complete infrastructure for policy
management has been implemented including a full range
of capabilities from sophisticated user interfaces for policy
specification and analysis to a generic policy disclosure
mechanism. Facilities for policy enforcement automation
(i.e., automatic generation of code for enforcers) are under
further development.
Pluggability. Platform-specific and application-specific
ontologies are easily loaded on top of the core policy
classes. Moreover, the policy enforcement elements have
been straightforwardly adapted to a wide range of
computing environments.
In the remainder of the paper, we discuss three current
applications of KAoS to Semantic Web Services, as
examples of the kinds of roles that a policy management
framework can play in providing:

• Policy management for the Grid Computing
environments (http://www.globus.org/ogsa/);

• Distributed policy specification and enforcement to
a Semantic Matchmaker;

• Verification for Semantic Web Services
composition and contract management.

Policy Management for Grid Computing

Our first foray into Web Services has been the
development of an initial OGSA-compliant1 version of
KAoS services, allowing fine-grained policy-based
management of registered Grid Computing services on the
Globus platform [9]. Our goal has been to extend and
generalize this capability so as to work with Web Services
outside of Grid Computing environments.
Globus provides effective resource management,
authentication and local resource control for the grid-
computing environment, but has a need for domain and
policy services. KAoS seemed to be a perfect complement
to the Globus system, providing a wide range of policy
management capabilities that rely on platform-specific
enforcement mechanisms. By providing an interface
between the Globus Grid and KAoS, we enable the use of
KAoS mechanisms to manage GSI (Grid Security
Infrastructure) enabled Grid services. GSI was the only
component of the GT3 (Globus Toolkit) we used in the
integration. The interface itself is a Grid service, which we
called a KAoS Grid service. It provides Grid clients and
services the ability to register with KAoS services, and to

1 OGSA - Open Grid Services Architecture, a Web Services-compatible
standard for defining Grid Computing Services

check weather a given action is authorized or not based on
current policies. The basic architecture is shown in Fig 2.

Figure 2. KAoS Grid Service Architecture

Creating a KAoS Grid Service
In order to create a KAoS Grid service, we used tools
provided with GT3 to create a normal Grid service and
then added to it the required KAoS framework components
to make it KAoS aware. This framework links Grid
services to the KAoS-implemented JAS2 services: Naming,
Message Transport, and Directory. It also associates a
Guard with the KAoS Grid Service, described above.

Registration
To use domain services, we needed to establish a method
for clients and resources to register within a KAoS domain.
The clients or resources use their credential to request to be
registered into one or more domains. The credential is a
standard X.509 certificate that Globus uses for
authentication. The credential is verified using the GT GSI.
If the certificate is valid the registration request is sent to
KAoS for registration into the desired domains. If the
resource uses an application specific ontology to describe
its capabilities, it will have to be loaded into the KAoS
ontology using a utility provided by KAoS. Inside the
KAoS Grid service, the registration is handled through the
associated Guard. This allows KAoS to distribute all
applicable policies to the appropriate Guard.

Expressing Policies
The basic components of any authorization policy are the
actor(s), action and target(s). A sample policy would read
as follows:

It is permitted for actor(s) X to perform action(s)
Y on target(s) Z.

Actors requesting to execute an action are mapped to
various actor classes and instances in the KAoS Policy
Ontology (KPO). In this case, actors consist of various
software clients and the groups they belong to. Registration
adds each client to the existing KAoS knowledge base
stored within JTP, offline or at runtime, enabling policies
to be written about the client or its domain.

2 JAS – Java Agent Services (http://sourceforge.net/projects/jas/)

The actions can be represented at different levels of
generality. A policy defined on a more general action might
permit or forbid overall access to a service, which is useful
for simple services or services that do not provide varying
levels of access. For example, a policy defining overall
permissions for a chat service might make use of generic
communication concepts in the existing KPO as in the
following:

It is forbidden for Client X to perform a
communication action if the action has a
destination of Chat Service Y.

This policy would be used to prevent Client X from using
Chat Service Y. KAoS already understands the concepts of
“forbidden”, “communication action” and “has
destination.” KAoS will also understand “Client X” and
“Chat Service Y” once each entity registers.
More complex services may require new concepts in the
ontologies that map to specific actions on a Grid Service.
For example, Reliable File Transfer Service has a variety of
methods that may not map to an existing ontology. To
provide fine-grained control of this service, the KAoS
ontology can be extended for the specific domain space and
loaded into KAoS using KPAT (KAoS Policy
Administration Tool), a graphical user interface for
interacting with KAoS (see Fig. 1 for example of KPAT
window). We are currently working on a tool to
automatically generate OWL ontology for a given WSDL1
specification of the OGSI-Compliant Grid Service.
Targets can be clients, services, or domain specific entities,
such as different computing resources. The first two cases
are added to the KAoS ontology upon their registration
within KAoS Directory Service, but the last case, requires
extensions to the ontology, either before loading into KAoS
or using graphical interface in KPAT.
Policies may be written to restrict a client’s use of a
resource, or to restrict the set of access rights delegated to
the KAoS Grid service.

Checking Authorization
Since the KAoS Grid Service has full control of access to a
given resource based on the rights permitted by
participating resources, it serves as the policy enforcer,
using Globus local enforcement mechanisms. The KAoS
Grid service coordinates with the KAoS Guard to
determine authorization for a requested action. Once
registered, clients will have access to the Grid service
based on the policies in KAoS. As policies are added into
KAoS through KPAT, they are automatically converted to
OWL for use in reasoning, and to a simple and efficient
representation in the Guard associated with the KAoS Grid
service for enforcement purposes. When a client requests a
service, the KAoS Grid service will check if the requested
action is authorized based on current policies by querying
the Guard. If the Guard allows the requested action, KAoS
Grid service initializes a GIS restricted proxy certificate by
putting the permissions needed to execute the action in its

1 WSDL - Web Services Description Language
(http://www.w3.org/TR/wsdl)

own end GIS entity certificate. This certificate is the one
provided by the resource at registration and maps to the
local control mechanism. The KAoS Grid Service also sets
the proxy lifetime and signs it. The restricted proxy
certificate is returned to the client. The client then uses this
proxy certificate to access the given grid service.
When a service receives a request it checks the submitted
certificate against the local GIS control mechanism.
Services can also check permissions by querying the KAoS
Grid service directly. The service checks to ensure that
action requested is covered by the intersection of the rights
given to the KAoS service and the rights embedded in the
certificate by the KAoS service. This allows the local
resource owner to write policies restricting the rights it
allows KAoS to delegate.
A current limitation of our implementation is that there is
no mechanism for proxy certificate revocation. Globus
relies on short lifetimes to limit proxy credentials. An
updated policy in KAoS would not take effect until the
current proxy credential expired forcing the user to return
to KAoS for an update.

Policy Management for Semantic Matchmaking

Within the CoSAR-TS (Coalition Search and Rescue Task
Support; Principal Investigator: Austin Tate) project
(http://www.aiai.ed.ac.uk/project/cosar-ts/) we are testing
the integration of KAoS and AIAI’s I-X technology with
Semantic Web Services. Military search and rescue
operations by nature require the kind of rapid dynamic
composition of available policy-constrained resources for a
task that make it a good use case for Semantic Web
technologies. Other participants in the application include
BBN Technologies, SPAWAR, AFRL, and Carnegie
Mellon University.

I-X Technologies
I-X Process Panels (http://i-x.info; [15; 16]) can provide
task support by reasoning about and exchanging with other
agents and services any combination of Issues, Activities,
Constraints and Annotations (in the <I-N-C-A> ontology).
I-X can therefore provide collaborative task support and
exchange of structured messages related to plans, activity
and the results of such activity. These types of information
can be exchanged with other tools via OWL, RDF or other
languages. The system includes an AI planner that can
compose a suitable plan for the given tasks when provided
with a library of standard operating procedures or
processes, and knowledge of other agents or services that it
may use.
Fig. 3 shows an I-X Process Panel (I-P2) and associated I-X
Tools. I-X can make use of multiple communications
methods ranging from simple XML instant messaging (e.g.
Jabber) to sophisticated policy constrained agent
communications environments (e.g. CoABS Grid, KAoS).
The I-Space tool maintains agent relationships. The
relationships can be obtained from agent services such as
KAoS if that is used to describe agents, domains and

policies. Communications methods and new contacts can
be added or changed dynamically while an I-X system is
running. I-X Process Panels can also link to semantic web
information and web services, and can be integrated via “I-
Q” adaptors [14] to appear in a natural way during
planning and in plan execution support.

Figure 3. I-X Process Panel for a Coalition Search and

Rescue Task

Constraints sent to I-X immediately change the model state
that is visualized in all views and used throughout the
system. These changes can trigger preconditions on
activities and affect the action options presented in the
selection menus. So, for example, web services availability
information, agent presence or status, and agent or people
GPS positions can be sent to I-X as world state constraint
messages and appear immediately. This allows for high
levels of dynamic workflow support.
I-X work to date has concentrated on dynamically
determined workflows at execution time – using knowledge
of services and other agent availability, etc. However, there
is also a process editor for creating process models (I-DE)
to populate the domain model and an AI planner (I-Plan)
which allows for hierarchical plan creation, precondition
achievement, consistent binding of multiple variables,
temporal constraint checking, and so forth.

CoSAR-TS Scenario
The scenario begins with an event that reports a downed
airman between the coastlines of four fictional nations
bordering the Red Sea: Agadez, Binni and Gao (to the
West), and Arabello (to the East). In this initial scenario it
is assumed that excellent location knowledge is available,
and that there are no local threats to counter or avoid in the
rescue. The airman reports his own injuries via his suit
sensors in this initial scenario.
Next is an investigation of the facilities available to rescue
the airman. There will be three possibilities: a US ship-
borne helicopter; a Gaoan helicopter from a land base in
Binni; or a patrol boat from off the Arabello coastline.

Finally, there is a process to establish available medical
facilities for the specialized injury reported using the
information provided about the countries in the region. A
hospital in Arabello is best placed to provide the facilities,
due to the fact that it has the necessary treatment facilities.
However, there is a coalition policy that no Gaoan
helicopters may be used by coalition members to transport
injured airmen.

CoSAR-TS Scenario Knowledge and Ontologies
Several OWL ontologies define the SAR domain and the
services that are available. Knowledge of medical facilities
is obtained from a medical OWL ontology stored in the
BBN SONAT database. This has been extended to include
data on the fictional countries in the Binni scenario:
Agadez, Arabello, Binni and Gao. The medical ontology
includes several instances of Hospital and other medical
facilities, and associated information provides the latitude
and longitude of hospital locations. Services that may be
invoked are defined in OWL-S. For example, we defined
the GaoMarineHelicopter service profile, which has the
associated atomic process PickUpDownedPilot. Gao
provides this profile, and has an input defined by the
(constrained) parameter description PickUpLocation which
refers to the property pickUpLocation_In restricted to
Location. The HospitalLocation and CountryOfHospital
are further inputs to the service profile, and these have
similar definitions. These resources provide the domain
knowledge and service capabilities that are required to plan
the SAR mission.

Figure 4. CoSAR-TS architecture.

CoSAR-TS Components
Four coalition agents are used, representing the roles and
functions of the Coalition SAR coordinator, US SAR
officer, hospital information provider, and SAR resource
provider. The Coalition SAR coordinator has an I-X
process panel, which can be used to follow a standard
operating procedure. This is represented by a rescue

Process Panel
Domain Editor

Messenger
I-Space

Map Tool

process in I-X, which, at the top-level, contains the four
activities: select hospital; select SAR resource; notify SAR
resource; notify hospital; which are executed sequentially.
The select hospital activity is broken down further into
three steps, one of which is lookup hospital—an action that
can be carried out by querying the SONAT database of
OWL-encoded facts (as described above). The
decomposition of the select SAR resource activity includes
lookup SAR resource, an activity that can be carried out by
querying the CMU Semantic Matchmaker [13] for a service
with a matching profile (i.e. one of the rescue services
encoded in OWL-S such as GaoMarineHelicopter).
Notifications are done using Sadeh's Notification Agent1,
which relies upon profiles defined using concepts from the
notification ontology to forward messages.

CoSAR-TS Policy Services Description
While annotation of the Semantic Matchmaker service
profiles allows registered service providers to describe
required security profiles [5], it does not allow owners of
infrastructure resources (e.g., computers, networks), client
organizations (coalition organizations, national interest
groups), or individuals to specify or enforce policy from
their unique perspectives. For example, the policy that
coalition members cannot use Gaoan transports is not
something that can be anticipated and specified within the
Matchmaker service profile. Neither would Matchmaker
service profile annotations be an adequate implementation
for a US policy obligating encryption, prioritizing the
allocation of network bandwidth, or requiring the logging
of certain sorts of messages.
Moreover, the semantics of these policies cannot currently
be expressed in terms of the current OWL-S specification
of conditional constraints. Even if they were expressible,
organizations and individuals may prefer to keep policy
stores, reasoners, and enforcement capabilities within their
private enclaves. This may be motivated by both the desire
to maintain secure control over sensitive components as
well as to keep other coalition members from becoming
aware of private policies. For example, coalition members
may not want Gao to be aware that the offer of their
helicopters to rescue the downed airman will be
automatically filtered out by policy.
Within the current CoSAR-TS implementation, KAoS is
used to define, represent, analyze, query, and deconflict
policies about access to Semantic Matchmaker information.
Additionally, we have defined enforcers that intercept
SOAP messages from the Matchmaker and filter results
consistent with coalition policies, specifically those that
prevent the use of Gaoan resources in the demo situation.
We are extending the SOAP-enabled enforcer to
understand arbitrary Web Semantic Service invocations so
it can apply appropriate authorization policies to them.
Additionally, we plan to equip it with a mechanism to
perform obligation policies, which will be in the form of
other Web Service invocations. For instance it can be

1 http://www-2.cs.cmu.edu/~sadeh/

imagined that some policy may require consultation or
registration of performed transactions in some logging
service available as a Web Service audit entity.

Verification for Semantic Web Services Composition

Automatic composition of feasible workflows from
available Semantic Web Services is an ongoing research
topic. An obvious solution argued in this paper, as also
proposed in [20], is the application of existing solutions:
the input and output formats can be straightforwardly
mapped to the emerging standard of the Semantic Web
Services Process Model (http://www.owl.org/services/owl-
s/1.0/). To this end, we are extending our implementations
of I-X and KAoS.

I-K-C Tool
In the context of CoSAR-TS, we have already integrated
KAoS and I-X to allow I-X to obtain information about the
relations about actors (human and software) such as peers,
subordinates and superiors and others represented in
domains and stored in the KAoS Directory Services. I-X is
also already able to use the KAoS policy disclosure
interface to learn about the impact of policies on its
planned actions. These represent first steps toward mutual
understanding of workflow specifications.

Figure 5. Cooperation between I-X and KAoS in the

Process of Semantic Workflow Composition

I-K-C is a name of the tool, integrating I-X and KAoS,
enabling composition of Semantic Web Services into
workflow taking into account policies constraining usage of
these services and their composition. At first, this tool is
going to build a workflow from the client perspective
taking into account only its policies, constraining usage of
different services and their composition, when building the
workflow. In order to realize the architecture in Fig. 52, the

2 http://ontology.ihmc.us/SemanticServices/I-K-C/I-K-C-Ontologies.htm
provides links to the actual ontology files in OWL

I-X Process editor and I-Plan planning elements are being
extended to allow the creation of composed workflows in
advance of execution. This will allow for the import of
services described in OWL-S to be used within the planner,
augmenting any predefined processes in the process library.
KAoS verifies constructed partial plans for policy
compliance. In order to achieve that a mapping from the
KAoS ontology of action1 to the OWL-S process ontology
was developed. Additional ontologies enabling
modification of partial plans with policy-related markup to
describe the results of policy checks for composed
workflows is also required. We are using <I-N-C-A> so
that the results can be expressed either as specific
constraints that must be added into the ‘plan,’ as specific
issues to address, or possibly activities to be added.
Additional information that cannot be conveyed as one of
these three types can be conveyed as <I-N-C-A>
annotations. The final plan in OWL-S ontology can be
exported for use in other enactment systems or can be
utilized to guide the dynamic reactive execution of those
plans in I-P2 or other tools.
An open research issue, common to others now exploring
the use of HTN planning approaches to web services
composition [20], is how far to go with plan time
composition and how much to leave unselected to dynamic
enactment support which can account for available
services, discovery of services, and so forth.
During plan execution, the KAoS Policy Service can
independently ensure that interactions between services
comply with policies constraining their usage. The policies
controlling both authorization and obligation of clients and
servers are stored in KAoS and checked by interested
parties2. It is possible to automatically enforce these
policies, both authorizations and obligations, by integration
of Semantic Web Services with the KAoS enforcer, as a
generalization of what is being done in the CoSAR-TS
application. The existing approaches to securing Semantic
Web Services are limited to either marking Service
advertisement with requirements for authentication and
communication and enforcing compliance with these
requirements [5] or by attaching conditions to inputs,
outputs and effects of services. KAoS is able to reason
about the entire action performed by the services and soon
will be able to understand workflows defined by I-X
technologies. Additionally we plan to use KAoS to
generate obligations created during use of the services,
which can be passed as constraints back to I-X.

Semantic Firewall
A necessary requirement for the support of complex,
dynamic groups of service providers in a business context
is the notion of a contract. While KAoS policies represent
constraints on behavior involuntarily imposed on software
entities, contracts represent voluntary agreements that

1 http://ontology.ihmc.us/Action.owl
2 Of course these parties would have to be authorized to have access to
the policies in question.

mutually bind the participants to various authorizations,
obligations, and modes of interaction. As an example of the
application of contracts to Semantic Web Services, Grosof
and Poon [8] have developed SweetDeal, a rule-based
approach to automating “law in the small.” SweetDeal
represents business contracts to allow software agents to
create, evaluate, negotiate, and execute contracts among
themselves for the performance of Semantic Web Services.
Within KAoS, we plan to extend the existing representation
of policy sets to include rules and other constructs
necessary to enable the creation and execution of contracts.
As part of contract creation, KAoS already has capabilities
for detecting policy conflicts and suggesting harmonization
[3]. These are being extended and combined with new
facilities for negotiation, and extensions to existing
capabilities for enforcement.

Figure 6. KAoS Policy Service as Negotiator, Holder and
Enforcer of Contracts Policies between Web Services

Contracts can be stored either within instances of KAoS (or
perhaps some other interoperable policy service) associated
with each Web Service or else, when stakeholders prefer,
as independent KAoS instances representing neutral third
parties (Fig. 6). We have begun to explore these new issues
in policy and contract management and execution in the
context of a collaboration with University of Southampton,
IT Innovation, and SRI International to develop a Semantic
Firewall [1]3. The tool will take as an input a desired client
workflow and starts negotiation with the policy services
associated with semantic service provider to be used in the
proposed workflow. In effect, the initial workflow can be
modified and amended with the agreed policy contract.
This contract will be then enforced by the system.

Tools Integration
An Integration of these two complementary tools, I-K-C
and Semantic Firewall, is envisioned for the next phase.
The resulting combination can use I-K-C to produced
initial workflow and then a policy contract can be
negotiated and enforced by the Semantic Firewall. Further
development may combine these tools even closer by
interleaving workflow planning and policy negotiation
phases.

3 See http://ontology.ihmc.us/SemanticServices/S-F/Example/index.html
for an example scenario with policies encoded using KAoS Policy syntax.

Acknowledgements

This material is based on research sponsored by the
Defense Advanced Research Projects Agency (DARPA)
and US Air Force Research Laboratory under agreement
numbers F30602-00-2-0577 and F30602-03-2-0014. The
U.S. Government, IHMC, and the University of Edinburgh
are authorized to reproduce and distribute reprints and on-
line copies for their purposes notwithstanding any
copyright annotation hereon.

References

[1] Ashri, R., Payne, T., & Surridge, M. (2004). Towards a
Semantic Web Security Infrastructure. AAAI Spring
Symposium on Semantic Web Services. Stanford Univ.

[2] Bradshaw, J. M., Beautement, M. Breedy, L. Bunch, S.
Drakunov, P. Feltovich, P., Raj, A., Johnson, M.,
Kulkarni, S., Suri, N. & A. Uszok (2003). Making
agents acceptable to people. In N. Zhong & J. Liu (Ed.),
Intelligent Technologies for Information Analysis:
Advances in Agents, Data Mining, and Statistical
Learning. (pp. in press). Berlin: Springer Verlag.

[3] Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N.,
Hayes, P., Burstein, M. H., Acquisti, A., Benyo, B.,
Breedy, M. R., Carvalho, M., Diller, D., Johnson, M.,
Kulkarni, S., Lott, J., Sierhuis, M., & Van Hoof, R.
(2003). Representation and reasoning for DAML-based
policy and domain services in KAoS and Nomads.
Proceedings of the Autonomous Agents and Multi-
Agent Systems Conference (AAMAS 2003).
Melbourne, Australia, New York, NY: ACM Press.

[4] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M. S.
(2000). Ponder: A Language for Specifying Security
and Management Policies for Distributed Systems,
Version 2.3. Imperial College of Science, Technology
and Medicine, Department of Computing.

[5] Denker, G., Kagal, L., Finin, T., Paolucci, M., &
Sycara, K. (2003). Security for DAML Web Services:
Annotation and Matchmaking. In D. Fensel, K. Sycara,
& J. Mylopoulos (Ed.), Proceedings of the Second
International Semantic Web Conference, Sanibel Island,
Florida, 2003, LNCS 2870. Berlin: Springer Verlag.

[6] Feltovich, P., Bradshaw, J. M., Jeffers, R., & Uszok, A.
(2003). Social order and adaptability in animal, human,
and agent communities. Proceedings of the Fourth
International Workshop on Engineering Societies in the
Agents World, (pp. 73-85). Imperial College, London,

[7] Fensel, D., Hendler, J., Lieberman, H., & Wahlster, W.
(Ed.). (2003). Spinning the Semantic Web. Cambridge,
MA: The MIT Press.

[8] Grosof, B. N., & Poon, T. C. (2003). SweetDeal:
Representing agent contracts with exceptions using
XML rules, ontologies, and process descriptions.
Submitted for publication.

[9] Johnson, M., Chang, P., Jeffers, R., Bradshaw, J. M.,
Soo, V.-W., Breedy, M. R., Bunch, L., Kulkarni, S.,

Lott, J., Suri, N., & Uszok, A. (2003). KAoS semantic
policy and domain services: An application of DAML
to Web services-based grid architectures. Proceedings
of the AAMAS 03 Workshop on Web Services and
Agent-Based Engineering. Melbourne, Australia.

[10] Kagal, L., Finin, T., & Joshi, A. (2003). A policy-
based approach to security for the Semantic Web. In D.
Fensel, K. Sycara, & J. Mylopoulos (Ed.), The
Semantic Web—ISWC 2003. Proceedings of the
Second International Semantic Web Conference,
Sanibel Island, Florida, USA, October 2003, LNCS
2870. (pp. 402-418). Berlin: Springer.

[11] Li, N., Grosof, B. N., & Feigenbaum, J. (2003).
Delegation logic: A logic-based approach to distributed
authorization. ACM Transactions on Information
Systems Security (TISSEC), 1-42.

[12] McIlraith, S. A., Son, T. C., & Zeng, H. (2001).
Semantic Web Services. IEEE Intelligent Systems, 46-
53.

[13] Paolucci, M., Kawamura, T., Payne, T. R., & Sycara,
K. (2002). Semantic matching of Web Services
capabilities. Proceedings of the First International
Semantic Web Conference. Sardegna, Italy.

[14] Potter, S., Tate, A., & Dalton, J. (2003). I-X Task
support on the Semantic Web. Poster and
Demonstration Proceedings for the Second International
Semantic Web Conference (ISWC 2003). Sanibel
Island, FL.

[15] Tate, A. (2003). Coalition task support using I-X and
<I-N-C-A>. In Proceedings of the Third International
Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS 2003), 16-18 June, Prague,
Czech Republic, LNAI 2691. (pp. 7-16). Berlin:
Springer Verlag.

[16] Tate, A., Dalton, J., & Potter, S. (2004). Intelligible
Messaging: Activity-oriented instant messaging.
Unpublished. http://i-x.info/documents/.

[17] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R.,
Suri, N., & Uszok, A. (2003). Semantic Web languages
for policy representation and reasoning: A comparison
of KAoS, Rei, and Ponder. Proceedings of the Second
International Semantic Web Conference, Sanibel Island,
Florida, 2003, LNCS 2870. Berlin: Springer Verlag.

 [18] Uszok, A., Bradshaw, J. M., Jeffers, R., Suri, N.,
Hayes, P., Breedy, M. R., Bunch, L., Johnson, M.,
Kulkarni, S., & Lott, J. (2003). KAoS policy and
domain services: Toward a description-logic approach
to policy representation, deconfliction, and
enforcement. Proceedings of Policy 2003. Como, Italy.

[19] Wright, S., Chadha, R., & Lapiotis, G. (2002). Special
Issue on Policy-Based Networking. IEEE Network,
16(2), 8-56.

[20] Wu, D., Parsia, B., Sirin, E., Hendler, J., & Nau, D.
(2003). Automating DAML-S Web Services
composition using SHOP2. In D. Fensel, K. Sycara, &
J. Mylopoulos (Ed.), Proceedings of the Second
International Semantic Web Conference, Sanibel Island,
Florida, 2003, LNCS 2870. Berlin: Springer.

