
KAoS Policy and Domain Services:
Toward a Description-Logic Approach to Policy
Representation, Deconfliction, and Enforcement

A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. Johnson, S. Kulkarni, J. Lott
Institute for Human and Machine Cognition (IHMC), Univ. West Florida, 40 S. Alcaniz, Pensacola, FL 32501

{auszok, jbradshaw, rjeffers, nsuri, phayes, mbreedy, lbunch, mjohnson, skulkarni, jlott}@ai.uwf.edu

Abstract

In this paper, we describe our initial implementation of
the KAoS policy and domain services. While primarily
oriented to the dynamic and complex requirements of
software agent applications, the services are also being
adapted to general-purpose grid computing and web
services environments as well. The KAoS services rely
on a DAML description-logic-based ontology of the
computational environment, application context, and the
policies themselves that enables runtime extensibility
and adaptability of the system, as well as the ability to
analyze policies relating to entities described at different
levels of abstraction.

Keywords: policy, agent, ontology, DAML, domains,
KAoS, description logic, policy conflict resolution.

1. Introduction

The increased intelligence and autonomy afforded
by software agents is both a boon and a danger. This
greater autonomy, if unchecked, has the potential of
effecting severe damage in the case of buggy or
malicious agents. Techniques and tools must be
developed to assure that agents will always operate
within the bounds of established behavioral constraints
and will be continually responsive to human control.

Under DARPA and NASA sponsorship, we have
been developing the KAoS [2, 3] policy and domain
services to increase the assurance with which agents can
be deployed in a wide variety of operational settings. In
conjunction with Nomads [7] strong mobility and safe
execution features, KAoS services and tools allow for
the specification, management, conflict resolution, and
enforcement of policies within the specific contexts
established by complex organizational structures. While
initially oriented to the dynamic and complex
requirements of software agent applications, the services
are also being adapted to general-purpose grid

computing (http://www.gridforum.org) and web services
(http://www.w3.org/2002/ws/) environments as well.

There are some important differences between the
objectives of our approach and that of other more typical
policy systems. Our approach seeks to enable policy
uniformity in domains that might be simultaneously
distributed across multiple platforms and execution
environments, as long as semantically equivalent
monitoring and enforcement mechanisms are available.
Second, insofar as possible the framework needs to
support dynamic runtime policy changes, and not merely
static configurations determined in advance. Third, the
framework needs to be extensible to a variety of
execution platforms.

2. KAoS policy ontologies

The representation chosen to describe the policies
and their context largely determines the flexibility,
extensibility, and amenability to analysis of a given
implementation. KAoS services rely on a DAML
(http://www.daml.org) description-logic-based ontology
of the computational environment, application context,
and the policies themselves [1]. It makes possibly to
represent subjects, actions, and situation at multiple
levels of abstraction and to dynamically calculate
relations between policies and environment entities and
other policies based on ontology relations. The use of an
ontology also facilitates a dynamic adaptation of the
policy framework by specifying the ontology of a given
environment and linking it with generic framework
ontology. The DAML description logic features enable,
using a inferencing engine, reasoning about policy
disclosure, conflict detection, and harmonization, as well
as about domain structure and concepts exploiting the
subsumption and instance classification algorithms.

The current version of KAoS Policy Ontologies
(http://ontology.coginst.uwf.edu/) d e f i n e s b a s i c
ontologies for actions, actors, groups, places, various
entities related to actions (e.g., computing resources),
and policies. There are currently 79 classes and 41

properties defined in the basic ontologies. It is expected
that for a given application, the ontologies will be further
extended with additional classes, individuals, and rules.

The actor ontology distinguishes between people
and various classes of software agents that can be the
subject of policy. Groups of actors or other entities may
be distinguished according to whether the set of
members is defined extensionally (i.e., through explicit
enumeration in some kind of registry) or intentionally
(i.e., by virtue of some common property such as a joint
goal that all actors possess or a given place where
various entities may be currently located).

The actions ontology defines the subclass relation
between action classes as well the partOf relation (for
composite actions) and the implementedBy relation
between abstract action classes and operations in the
given software environment; defining grounding of the
ontology concepts.

A policy is a statement enabling or constraining
execution of some type of action by one or more actors
in relation to various aspects of some situation. In
DAML, a policy is represented as an instance of the
appropriate policy type (i.e., positive or negative
authorization, positive or negative obligation) with
associated values for properties: priority, update time
stamp and a site of enforcement. The most important
property value is, however, the name of a controlled
action class. Usually, a new action class is built
automatically when a policy is defined. Through various
property restrictions, a given policy can be variously
scoped, for example, either to individual agents, to
agents of a given class or to agents belonging to a
particular group, etc. Additionally, action context can be
precisely described by restricting values of its properties.
The KAoS Policy Administration Tool (KPAT) is a
graphical interface hides the complexity of the DAML
policy representation from users.

3. Policy analyses

The KAoS Policy Ontologies are intended for a
variety of purposes. One obvious application is during
inference relating to different forms of online or offline
analysis of policies. They are used for a variety of
purposes, including policy disclosure management,
reasoning about future actions based on knowledge of
policies in force, and in assisting users of policy
specification tools to understand the implications of
defining new policies given the current context and the
set of policies already in force.

In the current version of KAoS, changes or additions
to policies or a change in status of an actor (e.g., a
human administrator being given new permissions;
software agent joining a new domain or moving to a new
host) requires logical inference to determine first of all

which policies are in conflict and second, in an optional
step, resolving these conflicts [4]. We have implemented
a general-purpose algorithm for policy conflict detection
and, if chosen, harmonization.

The three types of conflict that can currently be
handled are: positive vs. negative authorization (i.e.,
being simultaneously permitted and forbidden from
performing some action), positive vs. negative obligation
(i.e., being both required and not required to perform
some action), and positive obligation vs. negative
authorization (i.e., being required to perform a forbidden
action). The policy conflict detection and harmonization
algorithms within KAoS allow policy conflicts to be
found and resolved even when the actors, actions, or
targets of the policies are specified at very different
levels of abstraction. These algorithms rely on JTP
(http://www.ksl.stanford.edu/software/JTP/) ontology
inferencing engine that we have integrated with KAoS.

Policy precedence conditions are needed to properly
execute the automatic conflict resolution algorithm.
When policy conflicts occur, these conditions are used to
determine which of the two policies being compared is
most important. The conflict can then be resolved
automatically in favor of the most important policy.
Alternatively, the conflicts can be brought to the
attention of a human administrator who can make the
decision manually.

Figure 1. Representation of policy harmonization
The derivation of the newly generated set of

harmonized policies (Figure 1), if chosen, can be
understood by imagining an intersection of two N-
dimensional Cartesian products. If P1 and P2 are two
Cartesian products defined as:

P1 = D11 x D12 x …. x D1n
P4 = D21 x D22 x …. x D2n

then
P1\P2 = subP1 + subP2 + … + subPn

where
subPk =

(D11∩D21) x ... x (D1(k-1)∩D2(k-1))
x (D1k\D2k)
x D1(k+1) x .. x D1n

4. KAoS Policy and Domain Services

KAoS is a collection of componentized services
compatible with several popular agent/distributed system
frameworks, including Nomads [7], the DARPA CoABS
Grid [5], the DARPA ALP/Ultra*Log Cougaar
framework (http://www.cougaar.net), Brahms [6] and
CORBA (http://www.omg.org). The adaptability of
KAoS is due in large part to its pluggable infrastructure
based on Sun’s Java Agent Services (JAS)
(http://www.java-agent.org). For a full description of
KAoS, the reader is referred to [2].

Groups of people and computational entities are
logically structured into domains and subdomains to
facilitate policy administration. Domains may represent
any sort of group imaginable, from potentially complex
organizational structures to administrative units to
dynamic task-oriented teams with continually changing
membership. Membership in a given domain can extend
across host boundaries and, conversely, multiple
domains can exist concurrently on the same host.
Domains may be nested indefinitely and, depending on
whether policy allows, membership in more than one
domain at a time is possible.

KAoS Policy Framework (Figure 2) generic
functionality includes:

• Policy ontology management,
• Creating/editing of policies using KPAT,
• Storing, deconflicting and querying policies

using the Directory Service,
• Distribution of policies to Guards, which

control agents’ actions using Enforcers,
• Policy disclosure mechanisms.

The framework can be extended to support a specific
environment by:

• Defining new ontologies describing; resources
and types of actions which can be performed on
them,

• Creating Plug-ins for:
o Policy Template editors,
o Enforcers controlling specific actions or

with generic enforcement capability,
o Defining Semantic Matchers to

determine if a given instance is in the
scope of the given class to support
specific actions.

These plug-ins are linked with the framework by
association with appropriate ontology concepts so that,
for instance, if a user decides to create a policy for a

specific action class, the policy editor can be found using
this action class as a reference. The same method is used
to find an enforcer for a policy controlling some action
class.

Figure 2. KAoS Policy Framework Architecture
KAoS Policy Administration Tool (KPAT) is used

to browse and load ontologies, to define, deconflict, and
commit new policies, and to modify or delete them. The
generic graphical DAML Policy Editor, integrated with
KPAT, is driven by the ontologies loaded into the
Directory Service, during the bootstrapping process, and
always provides the user with the list of choices
narrowed to the current context by querying the loaded
ontologies. When a user commits a change to ontology
(e.g., a new or edited policy, changes to domain
structure) the Jena (http://www.hpl.hp.com/semweb/)
toolkit is used to dynamically build a DAML
representation based on the values selected by the user.

Following conflict detection, policies are distributed
to guards based on information about types of agents
controlled by them. Guards activate appropriate
enforcers based on received policy types.

Enforcers are the mechanism by which Guards
ensure compliance with authorization/obligation
policies. The grounding of enforcers to the particular
agent environment cannot always be made fully generic.

Depending on the environment; they can be made fully
general and understand abstract ontology action classes
via their property implementedBy, which maps them to
concrete environment operations, and by using reflection
and security mechanism of the environment. Other
environments require pre-building enforcers based on the
ontology description of the controlled action class,
potentially using preprocessor. Finally, some cases
required fully custom built enforcers. What can be made
generic however is the interface to the policy disclosure
system answering for instance the question, “is a given
action authorized or not?”

Figure 3. KPAT enables policy management
In KAoS, Guards disclose policies to authorized

parties (e.g. enforcers), which provide the description of
the interested action instance. The system can:

• Check permission to perform the action,
• Find the values of a partially described action

for which the final action would be allowed,
• Discover if some action is obliged for the given

condition.

5. Example applications

Many of the capabilities were developed as part of
the DARPA CoABS-sponsored Coalition Operations
Exper imen t (http://www.aiai.ed.ac.uk/project/coax/,
CoAX). CoAX models military coalition operations and
implement agent-based systems to mirror coalition
structures, policies, and doctrines. KAoS provides
mechanisms for overall management of coalition
organizational structures represented as domains and
policies.

Within the DARPA Ultra*Log program
(http://www.ultralog.net) we are developing agent policy
and domain services to assure the robustness and
survivability of logistics functionality in the face of
information warfare attacks or severely constrained or
compromised computing and network resources.

Another application is within the NASA Cross-
Enterprise and Intelligent Systems Programs, where we
are investigating the use of policy-based models to drive
human-robotic teamwork and adjustable autonomy for
highly interactive autonomous systems such as the
Personal Satellite Assistant (PSA).

6. Future work

Some areas of future work include: full support for
obligation policies and condition monitoring in the
framework, grounding of the enforcement mechanism to
new software environments, improved support for
reasoning about composite actions, augmentation of
policies with additional information such as penalties for
breaking policies and the rationale for them (expressed
as a risk) and equipping agents with mechanism to
reason about these information. We will also continue to
develop versions of KAoS suitable for deployment in
Web Services and Grid Computing environments.

References

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D.
& Patel-Schneider, P. (Ed.) (2003). The Description
Logic Handbook. Cambridge University Press,
[2] Bradshaw, J. M., Beautement, P., Breedy, M. R.,
Bunch, L., Drakunov, S. V., Feltovich, P., Hoffman, R.
R., Jeffers, R., Johnson, M., Kulkarni, S., Raj, A. K.,
Suri, N., & Uszok, A. (2003). Making agents acceptable
to people. In N. Zhong & J. Liu (Ed.), Handbook of
Intelligent Information Technology. IOS Press.
[3] Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley,
J. D. (1997). KAoS: Toward an industrial-strength
generic agent architecture. In J. M. Bradshaw (Ed.),
Software Agents. (pp. 375-418). Cambridge, MA: AAAI
Press/The MIT Press.
[4] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M.
S. (2000). Ponder: A Language for Specifying Security
and Management Policies for Distributed Systems,
Version 2.3., Imperial College, London,
[5] Kahn, M., & Cicalese, C. (2001). CoABS Grid
Scalability Experiments. O. F. Rana (Ed.), Second
International Workshop on Infrastructure for Scalable
Multi-Agent Systems at the Fifth International
Conference on Autonomous Agents. ACM Press,
[6] Sierhuis, M. (2002). Brahms - Modeling and
Simulating Work Practice. Univ. of Amsterdam Press,
[7] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P.
T., Hill, G. A., Jeffers, R., Mitrovich, T. R., Pouliot, B.
R., & Smith, D. S. (2000). NOMADS: Toward an
environment for strong and safe agent mobility.
Proceedings of Autonomous Agents 2000. Barcelona,
Spain, New York: ACM Press.

