
DAML Reality Check:
A Case Study of KAoS Domain and Policy Services

A. Uszok, J. M. Bradshaw, P. Hayes, R. Jeffers, M. Johnson, S. Kulkarni, M.
Breedy, J. Lott, L. Bunch

Institute for Human and Machine Cognition (IHMC), University of West Florida,
40 S. Alcaniz, Pensacola, FL 32501

{auszok, jbradshaw, phayes, rjeffers, mjohnson, skulkarni, mbreedy, jlott,
lbunch}@ai.uwf.edu

Description-logic-based knowledge representations and reasoning methods are
being used increasingly as the basis for semantically-rich software services.
Using such representations and reasoning methods in comprehensive
applications is among one of the best ways to identify and understand gaps and
limitations. KAoS domain and policy services, which rely extensively on a
DAML-based ontology, are used as a case study to investigate an in-depth
application of DAML. In this context, we explore the current limitations of
DAML semantics. We also describe our observations about the place of
ontology description at the heart of KAoS services, and outline requirements for
effective interfaces for humans and for translation to and from efficient
programming environments. Next, we present the problems implicated by
development of ontology descriptions in a distributed dynamic environment.
Finally, we assess the utility and maturity of available tools such as editors,
programming libraries and inference engines.

1 Introduction

DAML (www.daml.org), OWL (http://www.w3.org/2001/sw/WebOnt), and other
increasingly popular description-logic-based representations [1] seem to be a natural
choice to support the development of the current generation of semantically-rich
software services and intelligent systems [4].1 The KAoS Policy and Domain Services
framework [2, 3, 5, 14] is an interesting example of this trend. By investigating its
design, development, and application, we can learn much about the current state of
description-logic-based representations, tools, and technology—their strengths, their
gaps, and their limitations.

The implementation of the KAoS framework proved to be a challenging task and
required integration of the scarce existing DAML and description logic tools—an
overview of KAoS is provided in section 2. Development of ontologies necessary for
KAoS also provided valuable insight. Sections 3 and 4 describe how ontology
development is handled in KAoS and various issues in policy representation relating

1 OWL Full actually goes beyond description logics in its expressiveness, however as of this

writing there is no reasoning engine that supports every feature of OWL Full.

to DAML. The description logic reasoning capabilities integrated into KAoS facilitate
analysis of the relations among controlled policy elements and policies themselves,
allow for the design of a flexible policy allocation and distribution methodology, and
provide the foundation for the implementation of a sophisticated policy query system.
Issues relating to the integration of reasoning capabilities are discussed in section 5.
Section 6 describes issues relating to the central role of ontologies in the KAoS
architecture, both as the internal glue linking its framework components and also as
the way in which the KAoS system interacts with other systems. We conclude with a
few parting observations (section 7).

2 Case Study Overview: KAoS Policy and Domain Services

KAoS is a collection of componentized services compatible with several popular
agent platforms, including Nomads [13], the DARPA CoABS Grid [9], the DARPA
ALP/Ultra*Log Cougaar agent framework (http://www.cougaar.net) and CORBA
(http://www.omg.org). The adaptability of KAoS is due in large part to its pluggable
infrastructure based on Sun’s Java Agent Services (JAS) (http://www.java-agent.org).
While initially oriented to the dynamic and complex requirements of software agent
applications, KAoS services are also being adapted to general-purpose grid computing
(http://www.gridforum.org) and Web Services (http://www.w3.org/2002/ws)
environments.

Under DARPA and NASA sponsorship, we have been developing the KAoS
Policy and Domain services to increase the assurance with which agents can be
deployed in a wide variety of operational settings. In conjunction with Nomads strong
mobility and safe execution features, KAoS services and tools allow for the
specification, management, conflict resolution, and enforcement of policies within the
specific contexts established by complex organizational structures. KAoS domain
services provide the capability for groups of software components, people, resources,
and other entities to be structured into organizations of domains and subdomains to
facilitate agent-agent collaboration and external policy administration. KAoS policy
services allow for the specification, management, conflict resolution, and enforcement
of policies within domains. Policies are represented in DAML+OIL as ontologies.
The KAoS Policy Ontologies (KPO) distinguishes between authorizations (i.e.,
constraints that permit or forbid some action) and obligations (i.e., constraints that
require some action to be performed, or else serve to waive such a requirement).

Figure 1 presents basic elements of the policy framework. Framework2
functionality can be divided into two categories: generic and application/platform-
specific. The generic functionality includes reusable capabilities for:

• Creating and managing the set of core ontologies;
• Storing, deconflicting and querying;
• Distributing and enforcement policies;

2 Figure 1 emphasizes infrastructure supporting the specification and use of authorization

policies. There are additional components to support obligation policies and other aspects of
the system but they were omitted from the picture for simplicity; they do not introduce any
new aspects relevant to the issues discussed in this paper.

• Disclosing policies.

Fig. 1. Selected elements of the KAoS Policy and Domain Services framework.

For specific applications and platforms, the KAoS framework can be extended and
specialized by:

• Defining new ontologies describing application-specific and platform-specific
entities and relevant action types;

• Creating plug-ins for:
• Policy Template and Custom Action Property editors;
• Enforcers controlling, monitoring, or facilitating general or specific actions;
• Classifiers to determine if a given instance is in the scope of the given class.

Each of these components will be explained in more detail in the sections below.

3 Ontology Creation and Management

As already indicated, DAML ontologies are central to the KAoS system. Although the
DAML specification was relatively stable when KAoS services began to incorporate
it, it was not yet well tested. The development process revealed some limitations of
DAML, which are presented in the following sections of the paper. We are currently
preparing to transition KAoS to OWL—the W3C-approved evolution of DAML—in
the near future as soon as tools are sufficiently mature. However, we do not expect it
to eliminate these limitations.

The extensibility of KAoS for different applications and platforms requires
ontological development to be modular and incremental. The generic ontologies are
also divided into different namespaces to facilitate management. Unfortunately, this
ruled out the use of DAML editors then available, including those listed on
http://www.daml.org/tools, such as OilEd or OntoEdit, as well as Protegé
(http://www.ai.sri.com/daml/DAML+OIL-plugin). None of these editors was capable
of linking multiple ontology files together through the use of the daml:import
property.

3.1 Core KAoS Policy Ontologies

The current version of the core KAoS Policy Ontologies (KPO) defines basic
ontologies for actions, actors, groups, places, various entities related to actions (e.g.,
computing resources), and policies. It includes about 80 classes and 40 properties.

The actor ontology contains classes of people and software components that can be
the subject of policy. Groups of actors or other entities may be distinguished
according to whether the set of members is defined extensionally (i.e., through
explicit enumeration in some kind of registry) or intentionally (i.e., by virtue of some
common property such as a joint goal that all actors possess, or a given place where
various entities may be currently located).

We have found that developers sometimes do not clearly distinguish between those
policies that apply to each member of a group individually and those that apply to the
group as a whole. For example, a policy that restricts the use of network bandwidth to
50% will be enforced differently if it is intended that each actor in a group will be
allowed up to 50% of the network than it will if it is intended that the 50% of the
network is to be allocated to an entire group to which this set of actors belong. In the
latter case, not only does the enforcer need to assure that the overall network
consumption restriction is enforced but some mediating entity must also implement an
allocation strategy to manage sharing of the finite resource among individual
members. For this reason, the actor ontology distinguishes between the concept of an
ActorGroup (i.e., a kind of group that applies enforcement of a policy to the members
individually) and a GroupActor (i.e., a kind of group that applies enforcement of a
policy to the group as a whole).

The actions ontology defines various types of basic activities such as monitoring,
communication, moving, accessing, and so forth. It also defines subclass relations
between action classes, the partOf relation for composite actions and the
implementedBy relation between abstract action classes and operations in the given

software environment, thereby grounding the ontology concepts in specific platform
capabilities. Actions are also divided into ordinary actions and policy actions, the
latter comprising those actions that have to do with the operations of the KAoS
services themselves.3

For a given application, the core ontologies are further extended with additional
classes, individuals, and rules, which use the concepts defined in the core ontologies
as superconcepts. This allows the framework to discover specialized concepts by
querying an ontology repository for subclasses or subproperties of the given concept
or property from the core ontologies.

3.2 KAoS Ontology Management

During the initialization process, the core policy ontologies are loaded into the KAoS
Directory Service using the namespace management capabilities of the KAoS Policy
Administration Tool (KPAT) graphical user interface,4 additional application-specific
or platform-specific ontologies then can be loaded dynamically from KPAT or
programmatically using the appropriate Java method.

Fig. 2. KPAT ontology namespace management window.

The Directory Service is also informed about the structure of policies, domains,
actors, and other application entities. This information is added to the ontology
repository as instances of concepts defined in pre-loaded ontologies or values of these
instance properties. As the end-user application executes, instances relating to
application entities are added and deleted as appropriate.

3 This distinction allows reasoning about actions on policies and the policy framework without

resorting to the use of special “metapolicy” mechanisms.
4 Pronounced “KAY-pat”

Figure 2 shows the KPAT ontology namespace window with a list of ontologies
loaded from our DARPA Ultra*Log project work (http://www.ultralog.net). The right
side of the window shows the concepts from the namespace that was just loaded, as
divided into classes, properties, instances, and imported ontologies.

DAML files are intended to reside on the Web with namespaces defined by a URI.
This creates a problem when the system has to be tested or deployed in an
environment not connected to the Internet. We have solved this problem by gathering
ontologies into a local directory and either serving them by a specialized Web proxy
that will that will reroute requests to the stored files5 or simply by reconfiguring an
existing Web server such as Apache to simulate a list of URLs. Another solution is to
use the persistence mechanism provided by some DAML tools (described later) to
load the required ontologies from the Internet, store the persistence image, and then
distribute the image with preloaded ontologies along with our KAoS code
distribution.

3.3 Dynamic Creation of Ontology Concepts

Some concepts in the ontology have to be created dynamically, since they reflect the
changing elements of the application environment. The DAML representing these
dynamic elements must be generated either automatically or manually. An example of
automatic creation is when new concepts are generated as the result of an agent
registering to a KAoS domain. An example of manual creation of new concepts is
when users explicitly create new policies using KPAT. In both these cases, KAoS
employs the Jena Semantic Web Toolkit by HP Lab Bristol
(http://www.hpl.hp.com/semweb) to incrementally build and finally output the
completed DAML definition to the ontology repository managed by the Directory
Service. We have had a very positive experience with Jena; generally, it provides a
generic, comprehensive and reliable tool with which to build DAML.

Nevertheless, there are some minor issues with the Jena-generated DAML. One is
that it contains some redundant information. For instance, if the concept being defined
is an instance of some class, the DAML generated by Jena will naturally include
information that the particular concept used to describe the type of the instance is a
daml:Class. As this particular concept was previously obtained from the ontology
repository to which the generated definition will now be committed, the redundant
class information results in unnecessary computation. Our experience shows that the
amount of the redundant information in a DAML output created in the described
scenario consists of about 50 to 60 percent of all the definitions6. To remove this
redundant information KAoS contains a trimming module for analyzing Jena output
and removing all the DAML definitions referring through an rdf:about statement to
the concept with a namespace already loaded into the KAoS ontology repository.

A second problem showed up for a DAML output from Jena containing a
daml:collection construct. Jena converts such collections into daml:List constructs

5 The Java Virtual Machine in which the Directory Service is running has to be provided the

name of the host and the port number of the Web proxy serving the ontologies by using the
Java environment properties (proxyHost and proxyPort).

6 See http://ontology.coginst.uwf.edu/Jena/Ontology%20Trimming.html for an example.

and uses a non-unique identifier to refer to each element of the list (A1, A2, etc.). If,
as happens frequently, more than one DAML definition contains such identifiers, the
ontology repository becomes confused. Thus, the KAoS DAML trimmer adds a
unique prefix to these identifiers.

4 Policy Representation Considerations

In KAoS, policies express authorization or obligation constraints for some type of
action performed by one or more actors in some situation [3]. Whether or not a policy
is currently applicable may be conditional upon some aspect of the situation.
Auxiliary information may be associated with a policy, such as a rationale for its
existence or a specification of some penalty for policy violation. In contrast to many
existing policy systems [6; http://www.policy-workshop.org], KAoS aims at
supporting both an extensible vocabulary describing concepts of the controlled
environment and also an evolution of its policy syntax. Such features are one
beneficial consequence of defining policies within ontologies.

Figure 3 below presents an example of a simple policy. The policy forbids any
member of the Arabello domain from communicating with any entity outside the
domain. In KAoS, a policy is represented as a DAML instance of one of the four
types of policy (positive or negative authorization, positive or negative obligation).
The instance possesses values for various management-related properties (e.g.,
priority, time stamp, site of enforcement) that determine how the given policy is
handled within the system. An additional set of properties is used to determine the
actual meaning of the policy. The most important property value is the name of a
controlled action class. Authorization policies use it to specify the action being
authorized or forbidden. Instances of the obligation policy class contain additionally a
trigger value that creates the obligation, which is also a name of the class of actions.
Penalty properties contain a value that corresponds to a class of actions to be taken
following a policy violation.

All these three properties mentioned above require use of action classes as
instances within property values of a policy. It would be desirable to have a means to
define a range of the policy properties restricting it to subclasses of a certain class,
i.e., in this case the KAoS Action class. DAML does not currently support this feature,
however this feature is included in the OWL Requirements document [8] as R13. The
current workaround in DAML is to define the range as
http://www.daml.org/2001/03/daml+oil#Class.

Typically any action classes required to support a new policy are generated
automatically by KAoS when the policy is defined. Through various property
restrictions, a given subject of the action can be variously scoped, for example, either
to individual agents, to agents of a given class or to agents belonging to a particular
group, and so forth. The specific contexts in which the policy constraint applies can
be precisely described by restricting values of the action’s properties.

Fig. 3 Example KAoS policy

5 Inference Engine Integration

Three inference engines were reviewed for use with KAoS: FaCT [7], DAMLJess
[10], and the Java Theorem Prover (JTP) (http://www.ksl.stanford.edu/software/JTP).
We were looking at three main criteria: 1. degree of full DAML support, 2. adequacy
of the query interface, and 3. likelihood of good support and continued development
of the tool. JTP seemed the best choice at the time, and was integrated into KAoS.
One problem noted early on with JTP was the time required to assert new ontologies
into the inferencing engine. However, the steady improvement of JTP has led to a
dramatic increase in its performance, an order of magnitude or more in some cases.
Currently, loading of the KAoS core ontologies takes less than 16 seconds on Pentium
III 1.20 GHz with 640 MB RAM. Adding the definition of complexity similar to the
policy presented on Figure 3 takes less than 340ms.

5.1 Generic Query Interface for DAML/RDF concepts

JTP provides a KIF (http://cl.tamu.edu) interface to perform queries. KAoS extends
this capability using Java to provide a query interface specialized to certain kinds of
relations in RDF graphs and in DAML ontologies. The basic features of this interface
allow querying for:

• All the properties applicable to a given class;
• The range of some property for a certain class,
• All the known subclasses of a given class,
• All the known instances of the given class.

The complexity of these queries is considerable, since satisfying them requires

examining a large portion of the ontologies, and traversing subproperty and subclass
relations. For this reason, the results of these queries are cached. The cache is
selectively flushed when a new ontology is loaded.7

Even though the query interface is used within a specialized editor its functionality
can be used in a generic DAML editor. The editor would require these kinds of
inferencing in order to present to a user a comprehensive view of the particular
ontology concept, as this information can and usually is distributed throughout a
DAML file or files.

5.2 KIF Query Builder

The KIF Query Builder, developed and incorporated within KPAT and shown in
Figure 4, allows users to manually build KIF queries for the currently loaded
ontologies. Currently, it is possible to build queries containing up to two triples, of the
form (property subject value), connected by and or or. The elements of this structure
are either a concept from the ontology or query variables.

The user interface allows the user to build the query by selecting from among all
the possible values of properties or concepts within a given namespace. A variable to
which the results will be returned must also be selected; otherwise, the query will be
treated as a yes/no query. In the latter case, it will return either true or false after
evaluation.

The query builder can be used manually to put queries to the ontology repository.
Equally important, it allows developers to test any queries necessary for platform-
specific or application-specific extension to the system, save them to a file, and export
them into Java code as strings used to initialize queries. This solves the problem of
generating the ontology-based vocabulary for the Java code, necessary for interacting
with the inference engine.

7 The query interface is extensively used within KPAT; an example of its use is presented in

section 6.2.

Fig. 4. KPAT KIF Query Builder

5.3 Analyzing Policies

Some of the most important features of description-logic-based policy representation
and reasoning show their advantages as part of policy analysis. Among others, these
include subsumption-based reasoning, determination of disjointness, and instance
classification [1]. The first two features are used mainly during the kinds of analysis
associated with policy administration. Instance classification is especially valuable for
policy exploration, disclosure, and distribution—it is used, for instance, to determine
which entities belong to a given domain or if a resource being accessed by a given
action is within a range constrained by policy. Sections 5.3.1 and 5.3.2 discuss the
problems of policy administration and policy exploration and disclosure in greater
detail. Most of the capabilities discussed in these sections are already available in
KAoS; a few are currently under development. The diversity of applications of KAoS
will no doubt continue to fuel even more sophisticated forms of analysis in the future
[2, 3, 14].

5.3.1 Policy Administration
Each time a new policy is added or an existing one is deleted or modified, the
potential impact goes beyond the single policy change. Policy administrators need to
be able to understand such interactions and make sure that any unwanted side effects
are eliminated. KAoS assists administrators by identifying instances of given types of
policy interactions, visualizing them,8 and, if desired, facilitating any necessary
modifications.

8 Visualization features are under development.

One important type of interaction is a policy conflict [3, 14]. For example, one
policy might authorize actor A to communicate with any actor in group B while a new
policy might forbid actor A from communicating with actor B1, a member of B. In
general, if a new policy overlaps in key properties of a subset of controlled actions
with an existing policy of a potentially conflicting modality (i.e., positive vs. negative
authorization as in our example; positive vs. negative obligation; positive obligation
vs. negative authorization), some means must be used to identify the conflict and to
determine, in the area of overlap, which policy takes precedence.9 If precedence
cannot be determined otherwise, KAoS will ask the administrator to determine the
appropriate action (Figure 5).

Fig. 5. Notification about policy conflict and options available to the administrator.

Policy actions can be performed on a pair of overlapping policies:

• Remove Policy: one of the overlapping policies can be completely removed;
• Change Priority: priorities of the policies can be modify so they either do not

conflict or they alter the precedence relation;10
• Harmonize Policy: the controlled action of the selected overlapping policy can

be modified using an automatic harmonization algorithm to eliminate their
overlap; see [14] for details.. This required modification of the restrictions in
of the policy controlled actions by building either intersection (by using
daml:intersectionOf) or differences (by using daml:complementOf) of the
previous ranges in the two conflicting policies.

• Split Policy: the controlled action of the selected overlapping policy can be
automatically split into two parts: one part that overlaps with the other policy

9 If desired, precedence relations can be predefined in the ontology, permitting partially or

totally automated conflict resolution.
10 We currently rely exclusively on the combination of numeric policy priorities and update

times to determine precedence—the larger the integer and the more recent the update the
greater the priority. In the future we intend to allow people additional flexibility in designing
the nature and scope of precedence conditions. For example, it would be possible to define
default precedence over some policy scope based on the relative authorities of the individual
who defined or imposed the policies in conflict, which policy was defined first, which has the
largest or smallest scope, whether negative or positive authorization trumps by default,
whether subdomains takes precedence over superdomains or vice versa, and so forth.

and the other which does not. Then the priorities of these parts can be
modified independently. The splitting algorithm is similar to the
harmonization and is currently in development.

In the future, a more sophisticated user interface will allow for modification of

entire sets of policies at once.
Whereas the goal of policy conflict resolution is to ensure consistency among the

policies in force, other forms of analysis are needed to ensure policy enforceability. In
some cases, the implementation of policy may be impossible due to prior obligations
of the actor or oversubscription of resources. In the future, KAoS will be able to
suggest ways of relaxing such unsatisfiable constraints in certain situations.

In some cases, two complementary policies of the same modality can create
unanticipated problems. For example, one policy may prevent communication among
actors within domain A while another policy might prevent communication to actors
outside of the domain. Though the two policies would not conflict, their combination
would result in the inability of actors in domain A to communicate at all! It should be
possible in the future to flag these and other situations of potential interest to
administrators.

5.3.2 Policy Exploration and Disclosure
A human user or software component may want to use KPAT or a software interface
to answer “what if” questions (about the consequences of policy modifications) or
“how to” questions (to help them understand how to satisfy existing policies in
performing some action).11 In general, the answers to these queries are decided by
inferring whether some concrete action falls into a category of action controlled one
or more policies, and then determining what conclusions about the described action
can be drawn. As part of KAoS policy exploration and disclosure interfaces we
providing the following kinds of functionality:

• Test Permission: determine whether the described action is permitted;
• Get Obligations: determine which actions, if any that would be obligated as a

follow on to some potential action or event. For instance, there might be an
obligation policy which specified that if an actor were to receive information
about a particular topic then the system would be obligated to log or forward
this information.

• Learn Options: determine which policy-relevant actions are available or not
available in a given context. For example, the actor may specify a partial
action description and KAoS would return any missing (required) elements of
the action with ranges of possible values.12

• Make Compliant: action an actor tries to perform by informing it about the
required changes to the action based on the existing policies. For instance it

11 Note that policy restrictions may disallow certain types of information to be disclosed in

response to such queries.
12 Admittedly, a sophisticated form of this type of analysis would start to resemble a planning

problem in some respects. We are exploring the relationship between policy management and
planning technologies in new research with James Allen.

can try to send a message about particular subject to a few actors and the list
of actors is restricted to some subset or maybe the list has to be extended for
some required recipients; maybe the content of the actor message has to be
transformed by striping off some information.

• Get Consequences: of some action by observing/investigating possible actions
in the situation created by a completion of the considered action(s); to the
specified depth (consequences of consequences). This option has many
variants currently investigated by us.

5.4 Persistence and Transaction Support

Support for persistence and transactions is essential for any system with ambitions for
use in a production environment. Our work on the use of policy to enhance system
survivability within the DARPA Ultra*Log program, for example, has extremely
demanding requirements for security and reliability. Although the state of inference
mechanisms are not directly accessible to outside methods, due to their being
embedded in the Directory Service, JTP provides the necessary foundation to build
the required mechanisms.

For example, JTP’s snapshot method allows for fast checkpointing of the state and
fast recovery. This mechanism is used in KAoS during every commit of a new
ontology. Any inconsistency will result in an exception with a JTP-provided
explanation, and the pre-commit state will be recovered.

Additionally, JTP allows saving its current state to a file. This process is slower
than checkpointing, however if this feature is used conservatively and in conjunction
with the recording of assertions between file saves it can be used for recovery and
provides persistence.

5.5 Issues in Handling Dynamism

Because relevant aspects of the KAoS ontologies need to stay consistent with rapidly
changing state of application entities being governed by policy, a variety of
information about instances is stored in the inferencing engine context. Without this
information, it would be impossible to do reasoning about instance classification.
When application entities represented as instances are removed or changed in certain
ways, the inference engine needs a way to remove previously asserted information.

JTP provides an untell mechanism for this purpose. It relies on the checkpoint
mechanism to roll back to the state before the given assertion was made and then rolls
forward again by reasserting all subsequent statements except for the one removed.
This implementation of untell, while useful as a last resort, is too slow to work
practically in applications such as ours. Stanford is considering the development of an
alternative implementation.

As a necessary workaround, KAoS currently keeps information about the removed
instances in a table outside of the main JTP context and uses this information to filter
information returned by JTP. Information about any properties whose values may
change is kept in our own implementation of a separate classifier instead of in JTP.

This classifier can be implemented either using a distinct context of JTP, a simple
table or rely on the existing classifying service. The information about properties is
used to classify instances and combined with the results of instance classification
returned from JTP.

6 Ontology-driven System Architecture

In this section we consider the benefits and problems of using ontologies as a central
aspect of system design. An ontology allows for great flexibility in design and
deployment, however careful attention to performance-sensitive aspects of the system
is essential. Additional problems arise at two boundaries: where the reasoning system
meets the human world and where it meets the systems being governed by policy. Our
approach to addressing these issues is described in this section.

6.1 Ontology as Configuration Glue

The framework nature of KAoS means that the installation configuration can vary.
Since the role of each software component is related to concepts defined in
specialized ontologies it is relatively easy to associate these components (enforcers,
classifiers, policy editors, etc.) with an appropriate ontology definition. Such
mappings are registered in proper software factories, creating a new Java component
on demand (see Figure 1). KAoS always checks if particular factory consists of a
specialized component for handling the given ontology concept and if so, uses it
instead of the generic functionality.

6.2 Translating Ontology into Notions of the Legacy System

When policy leaves the Directory Service it typically has to translate from DAML
into some format, which is compatible with the integrated legacy systems.

KAoS communicates to the outside world DAML originate information using a
concept of map relating ontology properties to the name of the class defining its range
as well to the list with cached instances of that class when the map left the Directory
Service. A particular system can use the given cached instance for its computation;
also in any moment it can refresh them by contacting the Directory Service and
providing the name of the range.

6.3 Graphical Interface to Ontology Concepts

The KPAT graphical interface hides the complexity of the DAML representation from
users. On the other hand, its unique user experience is achieved through the use of
ontology. The user is always presented with a complete set of choices, which are valid
in the given context.

Fig. 6. KPAT generic policy builder – an example of ontology guided interface

As in the case of the generic policy editor shown on Figure 6, a user after selecting
an actor for a new policy is first presented with the list of actions the given type of
actors is capable to perform based on the definition in the ontology relating action to
actors by the performedBy property. When the user selects a particular action type
again information about all the properties, which can be associated with the given
actions are presented. For each of the properties, the range of possible values is
obtained; instances and classes falling into this range are gathered if the user wants to
build a restriction on the given property.

7 Conclusion

We have shown that the use of description logic provides significant advantages in
the design and development of a complex software system. Although some problems
arose from the expressive limitations of DAML, we were able to find effective
workarounds in practice, and the performance of available DAML technology has
improved significantly during the course of this project. We believe that the
techniques we have developed for using DAML in an agent-based application are of
general utility and can be re-used in other systems. This work provides practical
evidence in support of the thesis that the use of ontologies as a central paradigm in an
object-oriented programming scenario is an effective design strategy.

Acknowledgments
The authors gratefully acknowledge the sponsorship of this research by the NASA
Cross-Enterprise and Intelligent Systems Programs, and a joint NASA-DARPA ITAC

grant. Additional support was provided by DARPA’s CoABS, Ultra*Log, and
CoSAR-TS programs. We are also grateful for the contributions of Austin Tate,
Niranjan Suri, Paul Feltovich, Richard Fikes, Jessica Jenkins, Rich Feiertag, Timothy
Redmond, Sue Rho, Ken Ford, Mark Greaves, Jack Hansen, James Allen, and Robert
Hoffman.

References

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D. & Patel-Schneider, P. (Ed.) (2003).
The Description Logic Handbook. Cambridge University Press,

[2] Bradshaw, J. M., Sierhuis, M., Acquisti, A., Feltovich, P., Hoffman, R., Jeffers, R., Prescott,
D., Suri, N., Uszok, A., & Van Hoof, R. (2003). Adjustable autonomy and human-agent
teamwork in practice: An interim report on space applications. In H. Hexmoor, R. Falcone,
& C. Castelfranchi (Ed.), Agent Autonomy. Kluwer, in press.

[3] Bradshaw, J. M., Beautement, P., Breedy, M. R., Bunch, L., Drakunov, S. V., Feltovich, P.,
Hoffman, R. R., Jeffers, R., Johnson, M., Kulkarni, S., Lott, J., Raj, A. K., Suri, N., &
Uszok, A. (2003). Making agents acceptable to people. In N. Zhong and J. Liu (Eds.),
Handbook of Intelligent Information Technology. Amsterdam: IOS Press, in press.

[4] Bradshaw, J. M., Boy, G., Durfee, E., Gruninger, M., Hexmoor, H., Suri, N., Tambe, M.,
Uschold, M., & Vitek, J. (Ed.). (2003). Software Agents for the Warfighter. ITAC
Consortium Report. Cambridge, MA: AAAI Press/The MIT Press, in preparation.

[5] Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J. D. (1997). KAoS: Toward an
industrial-strength generic agent architecture. In J. M. Bradshaw (Ed.), Software Agents.
(pp. 375-418). Cambridge, MA: AAAI Press/The MIT Press.

[6] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M. S. (2000). Ponder: A Language for
Specifying Security and Management Policies for Distributed Systems, Version 2.3.,
Imperial College, London,

[7] Horrocks, I., Sattler, U., Tessaris, S. and Tobies., S. (2000). How to decide query
containment under constraints using adescription logic. In Proceedings of LPAR'2000,

[8] Heflin, J. (2003). Web Ontology Language (OWL) Use Cases and Requirements.
http://www.w3.org/TR/webont-req/,

[9] Kahn, M., & Cicalese, C. (2001). CoABS Grid Scalability Experiments. O. F. Rana (Ed.),
Second International Workshop on Infrastructure for Scalable Multi-Agent Systems at the
Fifth International Conference on Autonomous Agents. ACM Press,

[10] Kopena, J. (2002) DAMLJess web site.
 http://edge.mcs.drexel.edu/assemblies/software/damljesskb/damljesskb.html
[11] Paolucci, M., Kawamura, T., Payne, T. and Sycara, K. (2002). Semantic Matching of Web

Services Capabilities. In Proceedings of the 1st International Semantic Web Conference
(ISWC).

[12] Sierhuis, M. (2002). Brahms - Modeling and Simulating Work Practice. Univ. of
Amsterdam Press,

[13] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill, G. A., Jeffers, R., Mitrovich,
T. R., Pouliot, B. R., & Smith, D. S. (2000). NOMADS: Toward an environment for strong
and safe agent mobility. Proceedings of Autonomous Agents 2000. Barcelona, Spain, New
York: ACM Press.

[14] Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L., Johnson,
M., Kulkarni, S. and Lott, J. (2003). KAoS Policy and Domain Services: Toward a
Description-Logic Approach to Policy Representation, Deconfliction and Enforcement. In
Proceedings of IEEE Workshop on Policy 2003.

