KAo0S Policy Services Architecture

% ihmc

INSTITUTE FOR HUMAN & MACHINE COGNITION

KA0S Policy Services Framework:
User Guide

Date: 21 January 2013

Contents

1 KOS OVEIVIBW ...ttt r e Rt m e n et r et r e 4
1.1 KADS ODJECEIVEScueiieiitieieeie ettt sttt ettt bbbt b e b et e e b eb e ke e bt ek e e st ene e b et e sbeneesbesbesbe s 4
1.2 WAL IS POLCY? ...tttk b bbbt bbbt ab e et ene e 4
1.3 Policy Management VS. PIANNINGcccvvviiiieiiccicse sttt sae e nne s 5
1.4 The Importance Of SEMANTICSc.oiiiiiiiieiee ettt sb b bbb b 5
1.5 The Advantages Of USING POHICIES.cccciiiiiiiiiiiiiiei e 6

2 KAOS PoliCy Services ArChItECIUIEcciieieii ettt et e e e e e e nrenes 7
2.1 GENEIAl OPEIALION ...ttt ettt e et bbbt bt e et e b seeebe s bt be et e e st eneennebenbesbeneas 8
2.2 MEJOT COMPONENTSviuiitiiterieteiteeet sttt ettt ettt bttt b et s b nb s e eb et b et bt st es bbb e s e s 8
P22 T oo 1oy Y 3 {1010 o oSSR 10

I €T 1 (T TR = (o RSO USTURUR TR PPN 11
TR 14151 1 = o TSRS 11
3.2 KAOS Configuration FIlES........cucieieeie sttt rennenne s 12
3.3 RUNNING KADS ...t b et bbbt h e b et e bt sbeeb e s beebe e st et e e sbenbenbesne s 15
34 CrEALING AGENTS ...ttt ettt bbbttt bbb bbb bbbt b bbb e s 17
3.5 Creating DOMAINS.......ccueiiiiiiieie e e se st e et e et te e ese e e e s e testestesseeseeneeneeaeseeneeneenrens 18
3.6 Creating Agent DESCIIPLIONSc.oiiiiiiitirieei ettt sttt se et sbe st e beebe e e e e e nbesaesbesbesaeas 19
3.7 REQISIEIING AGENTS ...ttt bbbt bbbt b e bbb et e s 21
TR N 10T LT N0 1T £SO 21
3.9 SENAING IMBSSAGES ... veuveteiterteatietee e et sttt et et e s e sbeebe st e bt b e e e ese e e et e nbeebe et e e bt ebe e e e besbesbenbenbesneas 22
3.10 RECEIVING IMESSAGEScvereieitieeiietesteieate sttt ettt eb et b bbb b bbb bbb bt st e b e enes 22
3.11 Creating @ SIMPIE ACLIONeiiiiicece et e e reere e e enaesrenreneenrens 22
3.12 Adding a Simple Enforcer for Policy ChecKingccocuiiiiiiiiiiiieiee e 23
3.13 Creating a Simple Policy Without USiNg KPATcooiiiriiiiirreeesese s 23
3.14 Creating a Simple Policy USING KPATcco it nresne s 25

4 Policy Reasoning EXAMPIEScoiiiiiiiiieieieeie ettt et b bbbt b e e bbb e 28

Institute for Human and Machine Cognition 1

KAo0S Policy Services Architecture

10

11
12

13

14

4.1 Reasoning OVEr ACHION PrOPEITIEScviiiiie i ceeiesie ettt st s re e esr e besaesrennas 29
4.2 ReaSONING OVEI DOMEINS.ciuiiiiiieiieiiie ittt ettt sttt et e b sbesbesbeebeeseeneeseesbesbesaesbeneas 29
4.3 Reasoning oVer ONtOlOGICal TYPES....ccviiviieieeiieresesestestese e eee e te e sre e sseereeaeneeseesresresnesreenes 31
4.4 Additional Thoughts 0N REASONINGccveiveiviiieiieieieie et re e sre e sre e se e e srennas 32
OBIGALION POIICIES ...ttt e bbbttt b e bbbt b e et et e snenbenbe b 33
5.1 Extending the KAOS ONtOIOQY......cccviiiieiiieieiiesese e sie st ete e sre e e esaessesaesresresnesnens 34
5.2 Creating an Obligation POLICYcccciiiiiiiieciecee ettt s sresre s 36
5.3 TeStiING OBIIGALIONScveiiiitiiiieieee ettt b bbbt se et et sbesbe b b 37
5.4 Implementing Enforcement for Obligations..........ccccvivriiieiciescre e 38
Lo T oV o 0] 4114 Lu o] o S 40
T o o] 1 AT L=l [=] OO PR RPN 40
ROIE-VAIUE IMBPS. ... e vttt ettt e e s e e et et st e et e e ne e s e et et e see st e sbesneene e e eneeneenrenre e 42
7.1 Creating a Policy Using ROIE-ValUB-IMAPSc.ccceiviiiriieii ettt st enes 42
7.2 Role-Value-Map Implementation Changescooiieiiririeie e 43
7.3 Testing the Role-Value-Map EXAMPIEcccveeeierieriic et see s 44
Reasoning about HiStory and TIMEcc.ciuiiiiiiiiii et st re e r e e 45
8.1 Multiple HiStory CONITIONS.c.oiiiiiiitiiieeieiie ettt st e b seesbesbesne s 48
The API - Common Services INtErface (CSI)....cviiiiiieiierie s s sne s 51
L0 R I =1] o0 S PP OUR P PPPRTRN 51
T T 1 = U o] [OOSR PRURRUPRT PR 51
TR T (=T 1= OSSR 51
LR @ 1= o OO PO POPRTRN 52
0.5 PUBIISH/SUDSCIIDE ... bbbttt e e nbesne s 52
TG T =0 132 PSSR 53
ENFOICEMENT ..ottt ettt b e et s bt et s b et e be s b et e be st et et s b e nenbennens 53
10.1 Action INStANCE DESCIIPLIONeoiiiiieeiteiie ettt bbbt se e b e 53
10.2 Checking AULNOFIZATIONccviiiicieice st sr et neene e e e e seenrenee e 53
ORI O g =Tt 1o @ o] [T P U o] SRS 54
10.4 Policy Base CONFIGUIALION.cuiiiiiiiiie ittt bbb bbb b 54
10.5 StALE IMONIEOTueteeieterieiete ettt b et b ettt s b et b et b et et b et s bt et nnns 55
O TG T o 113 (o] 2SSOSR 56
O O - T 1 T RO U ST 56
10.8 Policy Callback IMEChANISMc.vciiiiieie et nrenre e 56
(YO T 010 (- @ 1 (o] [0 YOS 57
Extending the KAOS ONEOIOQY........couiiiiiiiiiiieieie ettt bbbttt se bbb e 57
I T T (=] g To [T g o 1A (o S 57
I (=13 Vo [T T Ao o PSSR 57
12.3 EXIENUING ENTILY ..ot ettt ettt b bbbt st seeebe e 58
12.4 Java Ontology Mapping TOOl.......cccciiiiieiicisecees et re e 58
12.5 Example ONtology EXIENSION.......ccciiiiieiiceceeiesiest ettt te e sa e te e st re e na e e e e re e e 58
RUNNING WIthOUL INTEINEE ACCESS ...ttt ettt bbb bbb bt e e be b sbe e 58
13.1 Starting the ONOIOGY PrOXYecveieiirieie st se s eeerees ettt sa e ae e sresnesnesne e eneeneennenee e 58
13.2 Making an ONntology SNAPSNOLccvcviiiieiicie et r e b 59
I RS I O 01 (0] (o]0 VA = (0)4V OSSP 60
Saving and Loading ConfigUIAtiONS.........cuiviieieiiie sttt re st sresresrenne s 60

Institute for Human and Machine Cognition 2

KAo0S Policy Services Architecture

14.1 Saving a POliCY SNAPSNOLccviicicie e et 60
14.2 ConfiguriNg 8N ANT SCEIPLeiuiiieeieie ettt bbbt b e e e e b e 61
ST oo 1Ty =TT o] TSRS ST 61
16 Policy CONFlICt RESOIULIONocviiiiicice ettt e b b e s teaneen e snesbesreaneas 61
17 AUVANCEA FRALUIES ...ttt bbbttt bt bt bt bt e Rt e b et sbeebesbeebe et e eneen b e nnebenbesbe s 63
17.1 Distributed DIrCtOrY SEIVICE....c.uiiuiiviieieieseseeieee ettt sa et sresre e ene e e e seenrenre e 63
S I I (0101 o] TS g oo [T[S S PRI 64
F AN o] 01T o |5 USSP 65
AU RETEIEINCES ...t bbb bbb bbb bbb 65
B Definitions, Abbreviations, and ACTONYIMScc.cccieiiiiiieieeieseeie et e e sre e e e sre st e e 65

Institute for Human and Machine Cognition 3

KAo0S Policy Services Architecture

1 KAo0S Overview

In the mid-1990’s, we began to develop KAo0S. KAo0S was originally designed as an agent platform and
still provides many features essential to distributed computing, but has now become a set of platform-
independent services that enable people to define policies for the security, predictability, and controllability
of both agents and traditional distributed systems. KAoS Domain Services provide the capability for groups
of software components, people, resources, and other entities to be semantically described and structured
into organizations of domains and subdomains to facilitate collaboration and external policy administration.
KAOS Policy Services allow for the specification, management, conflict resolution, and enforcement of

policies.

1.1 KAo0S Objectives

Provide policy, domain and other services for a wide variety of agent, robotic, and distributed
computing platforms

Be compatible with semantic technology standards (e.g., OWL)

Provide persistent policy and actor registration storage and sophisticated query and analysis
mechanisms

Support easy extension and customization of service framework elements

Provide policy dissemination and decision making infrastructure that is distributed, highly
efficient and transparently pluggable

1.2 What is Policy?

In agent and distributed computing contexts, policy can be defined as an enforceable, well-specified
constraint on the performance of a machine-executable action by a subject in a given situation.

enforceable: In principle, an action controlled by policy must be of the sort that it can be
prevented, monitored, or enabled by the system infrastructure;

well-specified: Policies are well-defined declarative descriptions;

constraint on the performance: The objective of policy is to ensure, with or without the
knowledge or cooperation of the entity being governed, that the policy administrator's intent is
carried out with respect to whether or not the specified policy governed action takes place;

machine-executable action: In addition to purely machine-executable actions, we include
situations where a person is responsible for completing an action and then somehow signaling that
fact to the machine;

subject: The subject is either a human being or a hardware or software component, or a group of
such entities;

situation: Policy applicability may be determined by a variety of preconditions and contextual
factors.

Institute for Human and Machine Cognition

KAo0S Policy Services Architecture

Policies constrain or amend user or system activity or state. They include a description (class) of the
controlled situation. This constitutes a test (template) for the applicability of the policy. They also contain a
definition of action Subject; an extension of traditional policy Role. KAoS supports two main types of
policies. The set of permitted actions is determined by authorization policies that specify which actions an
actor or set of actors is allowed (positive authorizations policies) or not allowed (negative authorizations
policies) to perform in a given context. Obligation policies specify actions that an actor or set of actors is
required to perform (positive obligations) or for which such a requirement is waived (negative obligations).
All other kinds of policies (e.g., delegation, teamwork coordination) are constructed from these two
primitive types, combined with other aspects of KAoS policy semantics (e.g., domains, history, or state).

1.3 Policy Management vs. Planning

Policy management should not be confused with planning or workflow management, which are related but
separate functions. Planning mechanisms are generally deliberative (i.e., they reason deeply and actively
about activities in support of complex goals) whereas policy mechanisms tend to be reactive (i.e.,
concerned with actions triggered by some environmental event). Plans are a unified roadmap for
accomplishing some coherent set of objectives. However, bodies of policy collected to govern some sphere
of activity are made up of diverse constraints imposed by multiple potentially-disjoint stakeholders and
enforced by mechanisms that are more or less independent from the ones directly involved in planning.
Plans tend to be strategic and comprehensive, while policies, in our sense, are by nature tactical and
piecemeal. In short, we might say that while policies constitute the “rules of the road” providing the stop
signs, speed limits, and lane markers that serve to coordinate traffic and minimize mishaps, they are not
sufficient to address the problem of route planning.

1.4 The Importance of Semantics

The use of XML as a standard for policy expression has both advantages and disadvantages. The major
advantage of using XML is its straightforward extensibility (a feature shared with Semantic Web languages
such as RDF and OWL, which are built using XML as a foundation). The problem with using XML alone
is that its semantics are mostly implicit (meaning is conveyed based on a shared understanding derived
from human consensus), which has the potential for ambiguity, promotes fragmentation into incompatible
representations, and requires extra effort that could be saved by a richer representation.

OWL was developed under the DARPA Agent Markup Language (DAML) program and adopted as a
standard by the W3C. OWL can be easily mapped to lower level XML-based representations if required —
mapping from more expressive to less expressive representations is relatively straightforward.

A few policy approaches based on Semantic Web representations (e.g., Rei, PolicyTab) have previously
been attempted, but we have found that none have the generality or wide range of capabilities of needed for
policy management frameworks like KAoS.

As a means of providing a formal semantics for policies and increasing their expressivity, many specialized
logics have been used and extended (e.g., modal logics, event calculus). In contrast, by adopting OWL, a
policy representation based on a widely-used formalism with well-understood and highly desirable
properties (i.e., description logic), we automatically harness many years of previous development, and the
momentum of the W3C standards process that has led to a proliferation of widely-available tools.

KAOS polices are expressed in OWL2 (Web Ontology Language: http://www.w3.org/ 2004/OWL), the
current version of the W3C standard, optionally augmented with other constructs (e.g., role-value maps) for
greater expressivity. This allows us to provide descriptions of actors, actions and situations at different
levels of abstraction. It enables the possibility to dynamically calculate relations among policy, platform
entities, and other policies based on concepts ontology relations. We can create a dynamic extension of the
service framework by specifying domain specific extensions to the ontology and linking them with the
generic KAoS ontology. OWL vocabularies allows for declarative definition of policy applicability.

Institute for Human and Machine Cognition 5

KAo0S Policy Services Architecture

1.5 The Advantages of Using Policies

Some of the characteristics of KAoS policies that make them useful are their powerful expressiveness,
external nature, transparency, and flexibility.

1.5.1 Expressive Power

The choice of policy language directly impacts the expressiveness available in policies. We use OWL to
provide declarative specification of policies at a broad range of levels. By combining this with reasoning
capabilities, we are able to reason about relationships and produce complex context sensitive policies.

They can address the entire system, groups within the system or individual instances within the system.
They can refer to actions at any level of abstraction and translate between levels. Most importantly, policies
allow for a context to be explicitly defined, which helps to prevent over (or under) restricting the autonomy
of the system. Policies provide a mechanism to explicitly define the “work-around” solution based on
context. Context can be any information, including things that the robot was never programmed to
consider, such as time of day or outside temperature.

1.5.2 External nature of policy

Policies can be used to separate the behavioral constraints and preferences of operators from the underlying
functionality. This is an idea that has been successful in many other areas such as database and web design.
Because these different aspects of knowledge are decoupled, KAoS policies can be easily reused across
different robots and in different situations. By putting the burden for policy analysis and enforcement on
the infrastructure, rather than having to build such knowledge into each component themselves, we
minimize the implementation burden on developers and ensure that all components operate within the
bounds of policy constraints.

1.5.3 Transparency

The use of KAO0S policies can also help to make the component behavior more transparent. Again,
constraints are made explicit, instead of being scattered and buried in the code. The benefits of
transparency are not restricted to humans. Deliberative systems are also free to take advantage of the
information available through policy disclosure mechanisms. Such information can be used to reason about
the implication of policies and generate a more accurate model of the system. The transparency of policies
can be used for planning purposes, resulting in more efficient plans by considering constraints. This can
both reduce the search space and prevent futile actions from being attempted. Finally, policies are
viewable and verifiable. As systems grow, multiple constraints in complex systems can lead to unexpected
(and possibly undetected) conflict. Often these oversights surface at very inopportune moments. Polices can
be screened for conflicts prior to activation and in some cases can be automatically harmonized. More
importantly, the policy creators can be informed of the problem, so they may take the best course of action.

1.5.4 Flexibility

One of the main advantages of using KAoS policies is that they are a means to dynamically regulate the
behavior of a system without changing code. New constraints can be imposed at runtime and can be
dynamically changed and updated as the environment or domain changes. Policy flexibility can also be
used to suit the system to the human, instead of solely training the human to the system. Through policy,
people can precisely express bounds on autonomous behavior in a way that is consistent with their
appraisal of an agent’s competence in a given context. This provides a broad range of controllability, as
well as allowing individuals to tailor the system to their needs. As trust increases, policy can be altered to
allow greater autonomy.

Institute for Human and Machine Cognition 6

KAo0S Policy Services Architecture

2 KAO0S Policy Services Architecture

KAOS Services are provided by a few core components. Figure 1 presents basic elements of the KAoS
framework. Framework functionality can be divided into two categories: generic and application/platform-
specific. The generic functionality includes reusable capabilities for:

oCreating and managing the set of core ontologies;
eStoring, deconflicting and querying;
eDistributing and enforcing policies;

eDisclosing policies.

For specific applications and platforms, the KAoS framework can be extended and specialized by:

eDefining new ontologies describing application-specific and platform-specific entities and relevant
action types;

oCreating extension plug-ins specific for a given application environment such as:

ePolicy Template and Custom Action Property editors;

eEnforcers controlling, monitoring, or facilitating subclasses of actions;

oClassifiers to determine if a given instance of an entity is in the scope of a given class-defining range.

KAoS Policy Framework createdit O

_____ __,_P_?Li..——i v
PnlncyTsmlarle
KPAT — > ' Editor1 ‘\

% 9""%% \%,
3% iy <
e
'f} Policy Template
) Editors Factory
oA
Genernic Ontology = b;;lj'l;;;s'p;;l-ﬁ-c
°l$ﬁ,“n’?' Dlrect_ory la— for the controlled |
R lrcastary) o Service foad :, environment(s) |
! Classifierfor |
i ActionProperty! |
.r%

T o
Client/ o
Agent Classifier

& % !
xS
% Enforcer
Factory

r] 0{()5(
] Enforcar for r Enrcroer for H.ae,a\ee“l
Achonl.‘.‘!ass1 1 AcllchIdss?

Figure 1 Selected elements of the KAoS policy and domain services framework

Institute for Human and Machine Cognition 7

KAo0S Policy Services Architecture

2.1 General Operation

A brief informal description of the general operation of the KAoS Framework starts with launching the
Directory Service. The Directory Service is the hub for all activity. The Directory service will use the
Internet to access various ontologies. KA0S provides a proxy service for applications that do not have
Internet access. Next the managed components are launched. These components can be agents, robots,
web services, or just plain applications. Basically they are bits of software that you would like to enforce
policies on. For historical reasons we will use the term agent to refer to these managed components. Once
launched, these agents register with the Directory Service, potentially providing additional information
about their capabilities or other properties. When agents register, a guard is create on the local platform to
provide a local policy decision point, enabling policy checking even with intermittent network connectivity.
Enforcement is handled by a domain specific application. The Enforcer must be capable of intercepting
actions, querying the guard for policy decisions and then enforcing those decisions on the native
application. The enforcer does not need to reason about policies as this is the role of the guard, it only
needs to enforce the decision. Policies are generally created graphically through KPAT, although they can
also be created programmatically through the Common Services Interface (CSI). Once created, KPAT
sends the policy to the Directory Service where it is stored and distributed to the relevant guards. Guards
only receive policies that are relevant to the agents they are guarding. When an agent attempts to perform
an action, the local enforcer intercepts the action, passes it to the guard, the guard informs the enforcer of
the policy decision (authorized or not and any obligations) and the enforcer imposes the result on the agents
action (e.g. preventing execution if not authorized).

2.2 Major components

2.2.1 Directory Service

The Directory Service is the main component of the system. It is the central location for storage and
distribution of information. It keeps information about the domain structure of the environment and
contains ontological definitions of the platform and active applications. It allows actors to register their
name and identities, membership in domains and ontologically specified types and capabilities. It keeps the
state of policies and the ontological description of the current situation by collecting the history of events
and monitoring states. It stores policy information, handles policy deconfliction and handles policy
distribution. The Directory can be run as a single component or can be distributed (see section ** below).
The Directory Service needs access to the Internet (or the KAoS ontology proxy) in order to obtain the
required ontologies.

2.2.2 Reasoning Services

Reasoning services are used in KAoS to perform inferences about ontological relations and policies. We
currently use Stanford JTP (Java Theory Prover). It provides the following features:

e First-order logic reasoning:

0 With support for description logic reasoning over OWL defined Knowledge Bases
e Support for non-monotonic reasoning:

o0 Untell operation
e Framework architecture allowing for adding new specialized sub-reasoners

Institute for Human and Machine Cognition 8

KAo0S Policy Services Architecture

2.2.3 Guard

The Guard is the policy-decision-point, typically running local to the application being governed (e.g., per
JVM), but can be deployed remotely as well. Guards can be connected to the DS by a network to enable
automatic policy updates, or they can be run in standalone mode, with policies loaded manually. There are
usually many Guards in a system, each controlling part of environment activities. It is also integrated with
the Directory Service to allow controlling DS actions by policies. The Guard stores precompiled (with
cached ontology relations) policies applicable to its area of interest. It does not use external reasoning
services directly. The Guard was designed to be easily integrated with legacy system via a Java API. It
provides a framework allowing to plug enforcement and classification modules specific for the current
application into the reasoning. The Guard is generic. It is not application specific, although its extensions
can be.

2.2.4 Enforcer

Enforcement is always platform specific. There are several ways to provide enforcement. We describe a
few in chapter 10. The key point to understand is that while the Guard provides a generic way to determine
the policy decision, the enforcer is the application specific enforcement mechanism that makes that
decision effective.

2.2.5 KAo0S Policy Administration Tool (KPAT)

KPAT (KAOoS Policy Administration Tool, pronounced KAY-pat) is a graphical user interface that allows
people to specify, analyze, modify, and test authorization and obligation policies during development or at
runtime. It can also be used to manage sets of ontologies, to configure and inspect Guards, and to perform a
variety of other administrative tasks. While KPAT is a sophisticated user interface tool in its own right,
most of its functionality is implemented within the DS and the Guards themselves. KPAT provides a means
to access that functionality and to view results and state interactively.

KPAT hides the complexity of the OWL representation from users. The reasoning and representation
capabilities of OWL are used to full advantage to make the process as simple as possible. Whenever users
are required to provide an input, they are presented with a complete set of context-driven values from
which to select.

KPAT’s generic Policy Editor (See Figure 2) presents an administrator with a starting point for policy
construction — essentially, a very generic policy statement shown as hypertext. Clicking on a specific link
that represents a variable provides the user with choices allowing him to make a more specific policy
statement. During use, KPAT accesses the loaded ontologies and provides the user with the list of choices,
narrowed to the current context of the policy construction. New classes and instances can also be created
from KPAT. To further simplify policy construction, KPAT provides two additional policy creation
interfaces: A Policy Wizard to guide users step-by-step, and a Policy Template Editor that allows custom
policy editors for a given kind of policy to be created by point-and-click methods.

KAOS includes a series of views, within the KPAT environment, that permit the policy generator the ability
to review the policies being generated. They are: Domain View (hierarchy of registered domains), Actor
Class View (list of actor classes defined in the loaded ontologies, Policies (shows the entire list of policies
and policy hierarchy sets in the system), Policy Templates (list of available policy templates from which
the user can create new policies, Policy Disclosure (list of policy disclosure queries), Namespaces (list of
loaded ontologies and information about selected ontology, Configuration (current configuration of the
Directory Service), Ontology Query (allows the user to query the ontology), Guard Manager (hierarchy of
registered Guards and information about the selected Guard)

2.2.6 Ontology Proxy

The ontology proxy is an optional tool that allows KAo0S to run without access to the Internet. See chapter
13.3 for more details.

Institute for Human and Machine Cognition 9

KAo0S Policy Services Architecture

2.3 Policy Distribution

Every actor in the system is associated with a Guard. Each Guard receives policy updates from the
Directory Service based on what it guards; actors ids, roles/classes of actors, and actions classes. Before a
policy leaves Directory Service it is transformed from OWL to semi-table format. Information about
instances in the classes, relevant class and properties relations are cached. The policy is stored in the Guard
Policy Information database, according to its priority in order to facilitate efficient policy queries.

Institute for Human and Machine Cognition 10

3 Getting Started

To begin using KAo0S, you must first download and install it. Next you create some actors, enable
them with some actions, and provide an enforcement mechanism. Then you can create and apply policies
to your actors. We will describe each step of this process in the following sections.

The sections of this chapter are a basic introduction to KAoS. There is a corresponding code example
(kaos/core/tutorial) that is a physical implementation of this chapter. The example is composed of four
classes:

1) SimpleAgent — the main agent example that extends KAoSActorimpl, which a KAoS helper class
to take care of some of the configuration and registration process.

2) SimpleAgentHuman — an extension for demonstrating ontological types

3) SimpleAgentRobot — an extension for demonstrating ontological types

4) TutorialDemo — a graphical interface to allow for easy creation of agents and domains. It allows
for testing out some of the features such as querying the Directory Service, sending messages,
and performing a simple action that we can check against policies. This application is simply the
scenario driver for the tutorial.

This example is designed to help get you going quickly using helper classes provided by KAoS, but as with
everything, there is always more than one way to things. As such, we will occasionally mention some
alternative methods, such as using CSI directly. KAO0S tries to impose as little as possible on the
applications that make use of its services.

It is important to remember that KAoS is not an agent environment. It does provide a communication
mechanism and a simple method for registering with KAoS, but you must create the actors, their abilities,
and provide planning mechanisms as desired. Similarly, KPAT is not and centralized controller for an agent
system. It is a policy administration tool that allows you to view registered agents and create policies.
Lastly, enforcement is always platform specific. It will be up to you to determine the best enforcement
strategy for your system. We provide several example techniques that show how enforcement can be
achieved. If you keep in mind that the main goal of KA0S is provide policy and domain services to variety
of systems you can avoid a lot of confusion.

3.1 Installation

The KAO0S distribution is currently offered to users after training. They have to be able to come to our
facility in Pensacola and get the proper software training. We will give them the version of the distribution
you desire and how to download it to your computer. For installation, simply you unzip the distribution file
to the desired location (your_kaos_root) on your computer. KAoS requires:

e Java 1.5 or higher (http://www.java.com)
e Ant 1.7 or higher (http://ant.apache.org)

Once the distribution is unzipped you will see several directories under your_kaos_root. These directories
are: config, lib, scripts and Servlets. The config directory provides several subdirectories that can be
configured according to your system needs (Section 3.2). The lib directory contains the required jar files to
run KAO0S. The Servlets directory contained jar files and a default configuration to run KAoS as a servlet
and the scripts directory which you can configure to run your own agent applications (Section 3.2). No
specific configuration or additional packages are required for basic execution which uses the KAoS native
raw TCP transport protocol and ant scripts. It also provides ant scripts for running the various tools and
components. The available targets and descriptions of each of the build.xml files can be obtained by
executing "ant -p" (ant version 1.6 and up) in a given subdirectory.

KAOS in general needs access to the Internet to load required ontology files. It is however possible to use
KAO0S without the Internet access. KAoS includes a tool called "ontology proxy", which can simulate web
servers providing ontology files. This is covered in chapter 13.

Institute for Human and Machine Cognition 66

Role-Value Maps

3.2 KAo0S Configuration Files

The directory kaos.config has subdirectories tcp, state and metrics and several configuration and properties
files that can be configurable: logging.properties, kpat.cfg, kpat_allTabs.cfg, log4j.properties, and
guardConfiguration.cfg.

The tcp directory has a subdirectory: default. The default directory has two files DS.cfg and Guard.cfg. The
Guard.cfg contains information about the guard. You can specify the Locators which use UDP to
automatically discover the Directory Service. If there are multiple directory services you may specify a
preferred one in the locator preferred host parameter setting it as a localhost, (default) or as a hostname
(symbolic name) or as the entity IP (numerical address in quotes). For TCP, you can set the network
interface when the system has multiple network cards. This applies enabling preferred-network-interface
eth0 to the TCP communication as well as UDP. Also, you can set the source IP address to use for UDP
advertisement/discovery (numerical address in quotes) for systems with multiple IP addresses bound to a
single interface. By default it is set to localhost: discovery-source-address localhost. You can configure the
time period for sending keep-alive advertisement via UDP in milliseconds (1000 ms in the example) and
enable or disable the compression of the message over the wire by setting the parameter transport-
compress-msg to either true or false or by comment it out. For the guard locator, you can enable or disable
(commenting out the lines) the UDP discovery for the local guard. If it is enabled you can specify the
discovery advertise, discovery group, and entity type. An example of the Guard.cfg file is as follow:

(java-agent-services

(key-prefix javax.agent.service)

(agent-directory-service
(service-factory kaos.core.service.directory.tcp. TCPAgentDirectoryServiceFactory)
specifies the locator to use for the Directory Service
(directory-service-locator DiscoveryDS)

)

(agent-naming-service
(service-factory kaos.core.service.naming.tcp. TCPAgentNamingServiceFactory)

)

(message-transport-system

set to false, or comment out to disable message compression
(transport-compress-msg true)
(service-factory kaos.core.service.transport. KAoSTransportSystemFactory)
(message-transport-service

(TCP
(transport-factory-class kaos.core.service.transport.BufferedMessageTransportFactory)
(transport-service-class kaos.core.service.transport.tcp. TCPMessageTransportService)
(preferred-network-interface ethQ)
(discovery-source-address localhost)

set the period (in ms) for sending keep-alive advertisement via UDP
(discovery-advertisement-period 1000)

(locators
DirectoryService locator: automatically discovered by UDP
(DiscoveryDS
(discoveryEnabled true)
unique discoveryGroup allows multiple KAoS systems to run on the same LAN
(discoveryGroup kaos)
(entity Type DirectoryService)
(preferredHost localhost)
(entityld KAoSDirectoryService)

)

alternate DirectoryService locator: manually configured hostname/1P address.
(HostBasedDS
(host localhost)

Institute for Human and Machine Cognition 12

Role-Value Maps

(port 2002)
(name KAoSDirectoryService)

)

Guard locator: enables UDP discovery. Comment out lines below to disable discovery
(LocalGuard

(discoveryAdvertise true)

(discoveryGroup kaos)

(entityType Guard)))))))

The DS.cfg file describes the Directory Service configuration. You can enable or disable the compression of
the message over the wire by setting the parameter transport-compress-msg to either true or false or by
comment it out. For TCP, you can enable preferred-network-interface ethO when the system has multiple
network cards. This applies to the TCP communication as well as UDP. You can set the source IP address
to use for UDP advertisement/discovery (put numerical address in quotes) for systems with multiple IP
addresses bound to a single interface. You can configure the time period for sending keep-alive
advertisement via UDP in milliseconds (1000 ms in the example). For the locators you can comment out
discoveryGroup to disable UDP discovery/advertisement. When it is enable, a guard can find a directory
service by broadcasting its information with the discovery group of interest and the directory service that
belongs to that group will respond accordingly. Here is an example of the DS.cfg file:

(java-agent-services
(key-prefix javax.agent.service)
(agent-directory-service
(service-factory kaos.core.service.directory.tcp. TCPAgentDirectoryServiceFactory)
)
(agent-naming-service
(service-factory kaos.core.service.naming.tcp. TCPAgentNamingServiceFactory)
)

(message-transport-system
set to false, or comment out

(transport-compress-msg true)
(service-factory kaos.core.service.transport. KAoSTransportSystemFactory)
(message-transport-service

(TCP
(transport-factory-class kaos.core.service.transport.BufferedMessageTransportFactory)

(transport-service-class kaos.core.service.transport.tcp. TCPMessageTransportService)
set the network interface, e.g. for systems with multiple network cards

(preferred-network-interface ethQ)
set the source IP address to use for UDP advertisement/discovery

(discovery-source-address localhost)

set the period (in ms) for sending keep-alive advertisement via UDP
(discovery-advertisement-period 1000)

(locators
(KAoSDirectoryService
(host localhost)
(port 2002)

(name KAoSDirectoryService)
comment out the line below to disable UDP discovery/advertisement

(discoveryGroup kaos)))))

The state directory contains the state.properties file that allows you to instantiate the list of state sensors
you are monitoring, their classes and parameters. Upon startup, the StateManager reads this configuration
file, instantiates each of the StateSensor, and registers the StateSensor with itself as a listener for policy
state conditions, based on the interested types of states. (Details in Section 10.5).For example:

#State sensors to instantiate
Institute for Human and Machine Cognition 13

Role-Value Maps

#state class params
Weather kaos.core.csi.extension.state.WeatherMonitor PNS MOB
FlightConditions kaos.core.csi.extension.state.FlightConditionMonitor PNS MOB

The metrics directory has the MetricManager.properties file to allow you to see the KAoS metrics which
by default is disabled or commented out. You can enable it to see the metrics by removing the # on the
parameter: #enabled = true.

In the looging.properties and log4j.properties files you can specify the level of debug information you want
while running your application, for example:
level=WARNING

level=SEVERE
level=INFO
level=FINE

The kpat_allTabs.cfg contains all the tabs available in KPAT. In the kpat.cfg you can configure which tabs
you want to be display by default when you are running KPAT.

The guardConfiguration.cfg allows specifying information about your agent as domain name, transport and
policy interest. For instance:

(java-agent-services
(key-prefix javax.agent.service)
(guard-service
(service-factory kaos.policy.guard.GuardRetriever)
(Transport
(transportName tcp)
)

(DomainNames
(TSOA 1)
)

(Policyinterests
(ActorClasses
(http://ontology.ihmc.us/Actor.owl#Actor 1)

(ActionClasses
(http://ontology.ihmc.us/Action.owl#Action 1)
)

)

The directory kaos.scripts contains two subdirectories: kaos-core and kaos-tools with build.xml files for
running the KAoS application. You can change parameters in the configuration files according to your
system specifications. For instance in the kaos.scripts.kaos-core.build.xml has the following targets for
running KAoS and KPAT: run-kaos that runs Directory Service and KPAT. You can also run them
separately using the targets: run-ds, and run-kpat. The kaos-tools directory has a build.xml file that allows
you to run the KAoS Ontology Proxy described in section 13.3. You can also build a script that starts all
KAO0S applications after you have created a snapshot of your agents (Section 13.2) as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<project name="Start KAoS with Delegation Management policy and ontolgy shapshot"
default="runKAoSforDM" basedir="..">
<import file="${basedir}/config/commonConfig.xml"/>
<property name="ontology.file" value="${basedir}/config/ontologySnapshots/DM.ont" />
<property name="directory.snapshot" value=

"${basedir}/config/policyConfigurationSnapshots/DMpolicy.cfg"/>

<property name="bootPath" value="${basedir}/config/tcp/default" />

Institute for Human and Machine Cognition 14

Role-Value Maps

<target name="runKAoSforDM"
description="Start KAoS with Delegation Management demo policy and ontolgy snapshot">
<fail unless="KAOS_HOME" message="Please set the variable KAOS_HOME" />
<echo message = "Starting ontology proxy, KAoS DS, Servlet and KPAT"/>
<parallel threadCount="4">
<ant inheritAll="true" antfile="scripts/kaos-tools/build.xml"
target="ontology-proxy-autostart” dir="${KAOS_HOME}"/>
<sequential>
<sleep seconds="8" />
<ant inheritAll="true" antfile="scripts/kaos-core/build.xml"
target="run-kaos" dir="${KAOS_HOME}"/>
</sequential>
</parallel>
</target>
</project>

3.3 Running KAoS

Using KAOS ant scripts provided on section 3.2 we can run various tools and components. They can all be
started individually, but we provide a default ant target the usually starts everything you need. To run basic
KAOS services (DS, servlet and KPAT) the default target of the kaos-core subdirectory build.xml file can
be used. Simple:

1) open aterminal and go to the your_kaos_root \kaos\scripts\kaos-core directory
2) type “ant”

KPAT should appear within one minute with the Directory Service being the only registered agent, as in
Figure 2. In general, you can usually start the Directory Service and KPAT once, and then start and stop
agents without restarting either the Directory Service or KPAT. You will have to expand the Policy
Management domain to see the Directory Service.

Institute for Human and Machine Cognition 15

Role-Value Maps

- A AD e 1Ye 3 0 D0 L ™

Root Selected Entiby Information
=i PolicyManagement Hame:
=R Running Entities Type:
- @l el
=5 E SdiBbabobilerecel-7obidald? s
g < - Palicizs
= B KAoSDirectoryService
Paolicy Priority In farce? Conkral Ackion Author

Palicy Description

< > : - -
Mew Policy Edit Remove Load Save
Edt Remove

Palicy Changes

Carmit -Refrash

Figure 2 Initial KPAT with only Directory Service running

The ant script for our example also starts KAoS for you, so you can skip this step and go directly to the
tutorial script in your_kaos_root \kaos\scripts\tutorial and type “ant”. You should see KPAT start
as in Figure 2, followed by our simple tutorial interface shown in Figure 3. This interface will
demonstrate all the items discussed in this chapter.

£ KAoS Tutorial M [=1E3
Create an agent HUMAN - name: domain: ,7
Query for agents il us/Actor. g - ANY

-
Send message from: b2 to: l:lzl

Perform Communication Action

Perform Move Action - reguestor: v
Login - pwd: Result ‘
Agents I Query Results

Figure 3 Tutorial GUI

Institute for Human and Machine Cognition 16

Role-Value Maps

3.4 Creating Agents

In order to make use of policies, most developers want actors upon which the policies can be applied.
Typically these actors are referred to as agents in this document, but they could be robots, web services,
grid services, or anything on which you would like to apply policies.

The simplest method to create an agent is to extend KAoSActorImpl. This class provides all the basics for
getting an agent started. You create one with a unique identifier (quid), name, list of domains to register in,
and desired transport. The guid can be automatically generated by KAo0S to ensure uniqueness, although for
most projects using the name is sufficient. The transport for this tutorial is just the sting “tcp”. You can
specify these parameters on the command line as well and pass the arguments to KAoSActorimpl for
parsing. The command line arguments are:

—guid agentldentifier {optional: if not supplied, the name will be used}
—name agentName

—domain domainName

— transport tcp

Here is an example of an agent named RadioSpectrumPolicyAgent which only registers with the Directory
Service and its arguments are:

—name: RadioSpectrumPolicyAgent
—domain: IHMC

public class RadioSpectrumPolicyAgent extends KAoSActorimpl

public RadioSpectrumPolicyAgent (String names, domainNames) throws Exception
{

super (name, domainNames);

initialize();

private void initialize() throws Exception

//Get the transport

String transport = CSIFactory. TCP_TRANSPORT;
Transoprt trans = new Transportimpl();
trans.setName (transport);

/Iregister the agent with Directory Service
super.registerWithKAoS();

public static void main(String[] args) throws Exception

/I create the agent

String domain = “IHMC”;

Vector<String> domains = new Vector<String>();
domains.add (domain);

RadioSpectrumPolicyAgent agent = new RadioSpectrumPolicyAgent (“RadioSpectrumPolicyAgent”, domains);

/l wait around until terminated
synchronized (Thread.currentThread())

Thread.currentThread().wait();

}
3

Institute for Human and Machine Cognition 17

Role-Value Maps

The wait call on the thread prevents the agent from terminating, which would deregister the agent from
KAOS.

After the code is compiled, we can run the agent, so the RadioSpectrumPolicyAgent will be registered and
be visible in KPAT as in Figure 4.

File Connection View
Domains and Actors % | Actor Roles / Classes % | Policies » |
=4 IHMC Selected Entity Information
_'r@ Running Entities HName: RadioSpectrumPolicyAgent
=, . cygnus KAoS Type: Agent
2 E i}SeZbSSf. 7021 eTC1 33 ID: urn:KAoS #RadioSpectrumPolicyAgent
=) PolicyManagement Ontology Types: [ogent
=-(R Running Entities
=i cyanus
(B eb5e274b95fbal0c:5c54224f 13538 .
- B KAoSDirectoryService Agent Properties:
Property Value(s)
Remove
Policies to ¥ yAgent
Policy Name Description or Statement Priority In Force
1 11 | 3
Policy Changes
Al policy changes have been committed to the Directory Service Commit Discard

Figure 4. RadioSpectrumPolicyAgent is registered in the IHMC domain in KPAT

3.5 Creating Domains

The easiest way to create domains is through the KAoSActorimpl arguments as described in the previous
section. This class will automatically register the domains if needed. The domain must exist prior to trying
to register in it or you will get an exception. You can register domains directly by using the Common
Services Interface (see chapter 0). You can also create them through KPAT manually by going to the
“Domains and Actors” tab and pressing the Add button. The domain will be added to the currently
highlighted domain or the root domain if nothing is highlighted. Note that added domains will not be
available next time you start KPAT unless you save and load the configuration (see chapter 14).

Institute for Human and Machine Cognition 18

Role-Value Maps

Diomains and Actars | ackor Roles | Classes || Policies

—i Root

(R z PolicyiManagement

Batt
= ‘ Company-f
- =4 Platoon-A
z Squad-a
{0 Squad-B
=-{§ Platoon-B
- {fi Squad-C
+. Company-B
- #=-{f Company-C
i=-{} Battalion-B
+. Company-D
+--{f§ Compamy-E

Figure 4 Example of Nested Domains

3.6 Creating Agent Descriptions

Agent descriptions are one way to make use of the richness of using a semantic representation. By
describing what group or groups an agent belongs to (domains), what class the agent belongs to
(ontological type) and any properties the agent might have (such as capabilities). We will describe how this
information is included in the agent description in the following sections and then show how we reason
over them in chapter 4.

3.6.1 Specifying Domains

Agents must be registered into a domain and that domain must exist prior to the agent trying to register into
it. KAoSActorImpl handles this for you. Domains are a nice way to group entities allowing you to write
policies about groups instead of individuals. For example, you could write a policy that members of team A
are not allow to send messages. They can represent organizational structures like teams, countries, or
chains of command. They can also be used to represent roles such as scout, sentry, duty officer, or plant
manager. You can assign an agent to more then one domain at a time and they can be changed at run time
as necessary.

3.6.2 Specifying Ontological Type

By default agents register as agents (http://ontology.ihmc.us/Actor.owl#Agent). There are several other
types specified in the KAoS onotology, such as Human and Robot. You can also extend these types to
include your own types as described in section 12. Similar to domains, ontological types allow you to
specify policies about groups instead of individuals. To set the ontological type simply:

agentDescription.setEntityOntological Type(url_of type);

You can assign more than one type to an agent and they can be changed a runtime as necessary. You can
confirm that you have set the type properly by viewing the agent in KPAT under the Domains and Actors
tab. On the right side, under Selected Entity Information you will see the default type of Agent and the
additional type, Human, that was added by the tutorial GUI as shown in Figure .

Institute for Human and Machine Cognition 19

Role-Value Maps

3.6.3 Specifying Properties

Properties can be arbitrarily added to agent descriptions. You provide property-value pairs for each
property you wish to define. You can assign multiple properties to an agent and they can be updated at
runtime. Properties can be anything you would like such as location, clearance, or capabilities. We will
demonstrate the property of “capabilities” which is a default property available with agent descriptions. As
in section 3.3 we can create a new agent named SimpleAgentRobot. For this new class we override the
getCapabilities method to define a capability of Target as follows:

List<AgentCapability> capabilities = new ArrayList<AgentCapability>();
AgentCapability agentCapability = new AgentCapabilitylmpl();
agentCapability.setName(ActionConcepts. Target());
capabilities.add(agentCapability);

Target is not a very meaning full property for a robot, but it is just for demonstration purposes and this
tutorial is only using the core KAoS ontology and does not include the robot ontology extensions. The
property is added to the agent’s description in the initialize method of SimpleAgent:

List<AgentCapability> capabilites = getAgentCapabilities();
_actorDesc.setCapabilities(capabilites);

Now we will create a robot by selecting “Robot” as the type, “Rover” as the name and leaving “TeamA” as
the domain.

¢ KAoS Tutorial

Create an agent ROBOT - name: |Rover domain: TearmA
Query for agents ihmc.usiActor. 0l - ANY o
Send message from: |Boh - to: |Boh : I
Perform Communication Action
Perform Move Action Bobh - requestor: Bob -
Login Bob - pwd: Result
Agents Query Results

Bob

Figure 5 Rover Registered as a Robot

Again, Rover will show up as an agent in the tutorial GUI (Figure 5) and in KPAT as in Figure 6. Notice
that the ontological type is different in Figure 5.

Institute for Human and Machine Cognition 20

Role-Value Maps

< KPAT][- KAoS Policy Administration Tool v2.0

Ei Root Selected Entity Information
lﬂz PolicytManagement Name: Rover
= TeamA 3 e Type: Agent
E’ Runnfng Sltes j(oH urn:kAoS#Rover
=i} mi-dell
=-{E 37ch61fBr3397d86:9adaZch:11 Ontology Types: Supparted OWL-5 Services:
i % Agent f o Data
Robot
#Agent Properties:
Property Yalue
REPLACE-REGISTRATION-TNFC |Fa\se
Policies applicable to Rover
Palicy Priotity In force? Cantrol Action Authar
Palicy Description
: . [|
Mew Palicy dit Remove Loa VE
L
Policy Changes
|]

3.7 Registering Agents

Figure 6 Rover Registered in KPAT

Once you have created the description you would like, simply call registerWithKAoS() if you have
extended kaos.core.csi.KAoSActorimpl. You can also register through CSI as described in chapter 0.
Registrations can be updated or replaced at runtime as necessary.

3.8 Finding Agents

Agents can be found by name, domain, ontological type, or capability. The details are provided in the
chapter 0 under Query. Our tutorial GUI allows you to query by ontological type or capability and displays
the results in the right hand side as shown in Figure 7.

“ KAoS Tutorial EI@E
Create an agent ROBOT ¥ name: |Rover domain: Team?
Query for agents us/Actor. - ANY -
Send message from: Boh - to:
Perform Communication Action
Perform Move Action Boh - requestor: [Bob -
Login Bob v pwed: Result |
Agents i Query Results
Bob [Rover
Rover
Figure 7 Query Results for Robots
Institute for Human and Machine Cognition 21

Role-Value Maps

3.9 Sending Messages

Although there are many ways to send messages this section will discuss using KAoSActorImpl to send
messages. KAoSActorImpl provides a simple method that uses the transport layer of CSI (refer to chapter
0):

sendMessage(message, receiverName);

Our tutorial GUI (Figure 8) allows you to type your text message next to the “Send message” button and
select the sender and receiver. Then press the “Send message” button and you should see:

[java] SenderName sent message to ReceiverName: message
[java] RecieverName received message from SenderName: Message

- KAoS Tutorial H(=]E3
Create an agent ROBOT b4 name: Rover domain: TeamA
Query for agents http://ontology.ihmc.us/Actor.owl#Robot - ANY -
Send message hello from: |Boh - to:
Perform Communication Action
Perform Move Action Boh ¥ requestor: [Boh -
Login Boh - pwid: Result |
Agents | Query Results
Bob Rover
Raver

Figure 8 Sending a Message

3.10 Receiving Messages
To receive messages using the KAoS transport your agent must implement the MessageL istener interface.

The KAoSActorimpl class already does this, so if you are extending it you only need to override the
receive message method as shown in SimpleAgent:

public void receiveMessage(Serializable messageContent, KAoSActor sender)

{

System.out.printin(_actorDesc.getAgentNickname() + " received message from " +
sender.getName() + ": "' + messageContent);

}

3.11 Creating a Simple Action
Action descriptions are the main datatype exchanged with KAoS:

e kaos.core.csi.ActionInstanceDescription(Impl)
e kaos.core.csi.OntPropertyDescription(Impl);

Applications that check authorization policies must be able to create of action descriptions, and applications
that handle obligations must be able to interpret them when received. Action descriptions can contain a
complex value in the form of:

e kaos.core.csi.OntInstanceDescription(Impl);

Names used as types and properties in these data structures are from the Java vocabulary files generated
using the mapping tool (chapter 12.4).

Institute for Human and Machine Cognition 22

Role-Value Maps

We will use a simple ActionInstanceDescription(AID) to represent an action. You can create an AID in
several ways including using OWL or just Strings from the ontology. Our example uses simple Strings
from the ontology:

HashMap properties = new HashMap();
properties.put(ActionConcepts.hasDestination(), NamespaceValidator.validateURI(receiverName));
properties.put(ActionConcepts.carriesMessage(), message);
aid = new ActionlnstanceDescriptionimpl(null,
ActionConcepts.CommunicationAction(),
NamespaceValidator.validateURI(this.getName()),
properties);

ActionConcepts is the Java class that contains the corresponding strings from the KAoS OWL ontology. It
is automatically generated using tools described in chapter 12.3. We are going to add two properties to the
action. The first is hasDestination and the value is the intended receipiant. The second is carriesMessage
and message is the value. When agents register with KAoS, their names are not valid URIs, so KAoS
appends urn:KAoS# to make them valid. The NamespaceValidator.validateURI method appends the
appropriate prefix. You could append it yourself, but using this method ensures you will not have problems
if the prefix changes in the future. Forgetting to add this prefix when using names is the most frequent
cause of problems people encounter. Please ensure whenever you use a name in a query or in an AID that
you qualify as shown above. It will save you a lot of headaches.

3.12 Adding a Simple Enforcer for Policy Checking

Adding a simple enforcer is easy using our KAoSActorimpl. You just call the enforcePolicies method
which does the following:

PolicyChecking policyChecking = CSlIFactory.getPolicyChecking();
Vector<ActionInstanceDescription> obligations = policyChecking.findPolicyDecision(aid, null);

Basically this uses CSI (chapter 0) to get a Policy Checking interface and then uses the interface to get the
policy decision. Ignore the returned obligations for now (see chapter0). The important feature for this
section is that this method throws a KAoSSecurityException if the action is not authorized. There are many
ways to provide enforcement, which we discuss in chapter 10. In this example we are providing our own
enforcement, by checking the action and only allowing the action if it is authorized. Inside t

3.13 Creating a Simple Policy without Using KPAT

We can build policies using KPAT or adding some specifications in the RadioSpectrumPolicyAgent to
build the policy and then using KPAT to validate the policy. We are going to start by using CSI to get the
ontology service and then build a “Channel” class using the KAoSOntClassBuilder from the KAoS classes
and load it.

OntologyService os = CSIFactory.getOntologyService();
/[Create a class and an ontology builder for Channel
KAo0SOntClassBuilder channelBuilder =
new KAoSOntClassBuilderImpl (http://ontology.ihmc.us/Radio/RadioEntity.owl#” + policygui +“Channel™);

//Use the Radio ontology to load the new class
channelBuilder.setMainSuperClass (RadioEntityConcepts.Channel);

We can set a Control Action class “RadioTransmissionAction” as follow:

String action = RadioActionConcepts.RadioTransmissionAction;

//Get a builder for the control action class
KAo0SOntClassBuilder controlActionBuilder = new KAoSOntClassBuilderImpl ("ControlActionForPolicy" +
Policyguid);

Institute for Human and Machine Cognition 23

Role-Value Maps

//Use the Radio ontology to load the new class “Channel”
controlActionBuilder.setMainSuperClass (action);

Then, we set the property range “hasChannel” using the control action builder already defined and load the
control action builder into DirectoryService using the SerializableOntModel class in KAoS:

controlActionBuilder.setPropertyRangeClass (RadioActionConcepts.hasChannel(),
channelBuilder.getClassName());

We can set another property range to a class value already defined on existing KAoS ontologies like the
Actor class.

controlActionBuilder.setPropertyRangeClass (ActionConcepts.performedBy(), ActorConcepts.Actor);

Finally, load the model:

SerializableOntModellmpl model = controlActionBuilder.getOntModel();
o0s.loadOntology (model, false);

After this requirements are set we are ready to build the policy using the KAoS policy builder class and
adding the policy id, name, modality, description and priority:

KAoSPolicyBuilder owlPolicyBuilder = new KAoSPolicyBuilderimpl();
owlPolicyBuilder.setPolicyName (“RadioSpectrumPolicy”);
owlPolicyBuilder.setPolicyAuthor (“KAoSTeam”);
owlPolicyBuilder.setPolicyDescription ("This is the Radio spectrum policy");

owlPolicyBuilder.setPriority (1);

//Set the control action to the owl policy builder
owlPolicyBuilder.setControlActionClass (controlActionBuilder);

//Get the policy message from the owl policy builder and add it to a list of policies
PolicyMsg polMsg = owlPolicyBuilder.getPolicyMsg();

List<PolicyMsg> policyList = new ArrayList();

policyList.add (polMsg);

We get the policy management from CSI and update it with the new created policy so we can run the
RadioSpectrumPolicy agent and see the policy display on KPAT.

PolicyManagement pm = CSIFactory.getPolicyManagement();
pm.updatePolicies (policyList, new ArrayList(), new ArrayList());

We can run KAoS and KPAT so we can validate the policy. Figure 11 a. shows the RadioSpectrumPolicy
that we created without using KPAT.

Institute for Human and Machine Cognition

24

Role-Value Maps

| KPAT [- KAoS Policy Ad

= . = —
File Connection View

Domains and Actors % |ActorR.oles,|f[jassEs L |Pol|c|es x |0nmlogy\‘|ew & | Policy Editor %

El . PolicyManagement Selected Entity Information
: a Running Entities Hame: RadioSpectrumPolicyAgent
Bg %gmifﬁ 274b95fballc:-3a0ddi7d 1354 b el
=K eb3e. aflc-3a
ID: :KAoS #RadioSpectrumPolicyAgent
A KAoSDirectoryService it sl
E‘. IHMC Ontology Types: Agent
=-{8) Running Entities
= cygnus
=B eb5e274h95fbaf0c:2dde802d:1354

¥ WRadioSpectrumPolicyAgent Ry Progesties

Property Value(s)

e

to

Policy Mame Description or Statement
urizssc:policy01#ContourPoli
cyRulel

Priority In Force

uri:ssc:policy0i#ContourPali - Radio spectrum policy 1 E
cyRulel

uri:sscipolicy01#ContourPali Radio spectrum policy
cyRulel

4 T | 12

IiewPuﬁCVVH Edit H Remove H Load ” Save I
Policy Changes

All policy changes have been committed to the Directory Service

Commit Discard

Figure 9a RadioSectrumPolicydisplyed by KPAT

3.14 Creating a Simple Policy Using KPAT

We now have the basic requirements to demonstrate a simple policy. Using the KAoS tutorial, create two
agents as we have done in the above sections. The policy we will create is a simple authorization policy.

Authorization policies permit or deny actions. The basic format is an actor, modality and action. For
example:

Bob is not authorized to send messages to Sam
actor modality action [context]

In this policy, Bob is the actor, negative authorization is the modality, and sending messages is the action.
We also include the context of “to Sam”. Context is optional. It is usually some property of the action, but

can be complex. Context enables very rich policy specification. For our first policy we will not use any
context, but will add some in future examples.

Enter a message as in the sending message section and select Bob as the sender and Rover as the receiver.
Instead of pressing “Send message” use the “Perform Communication Action” button. This will build the

AID and check policies on the action. Since we have not created the policy yet, the result should see the
button turn green indicating authorized as in Figure 10b.

Institute for Human and Machine Cognition 25

Role-Value Maps

¢ KAoS Tutorial

Create an agent ROBOT name: Rover domain: [Team#a

Query for agents ihi usifctor. ANY

Send message hello from: Bob to: I

|
Perform Move Action Bob reguestor: |Bob
Login Bob pwd: Result ‘

Agents Query Results
Boh Rover
Raver

Figure 10b Authorized Action

Now let’s create a policy. We will create an authorization policy that says Bob is not authorized to perform
Communication Actions. This means Bob can not perform any Communication Actions no matter what the
properties. We will relax this in later policies, but for now go to KPAT and select Bob. Press the “New
Policy” button and select “Use hypertext editor”. An editor will appear. Give the policy a name, a
description, and a priority. The original priority mechanism was a simple integer ranking, so a value of one
is fine. We provide other priority mechanisms, but they are covered elsewhere. Ignore the condition for
now and move to the Policy Statement. Bob will be the default, since you selected Bob before starting the
policy. Click on constrained and choose not authorized. Click on action and select CommunicationAction.
Your policy should look like Figure 11. Now press OK. KPAT will remind you to commit your changes.
Press commit and KPAT will tell you that it was successful. Congratulations! You just made your first

policy.

£ KPAT][- KAoS Policy Administration Tool v2.0

Hypertext Policy Editor

Palicy ID: urn:KAoS# policy-67b9bfe0-01 1b-0000-8000-0000aabbecdd

Policy Name: | BobiaTalk |

Description: | Bob is not autharized to perform Communication Actions

Priority: |1 _"
Condition

This policy always applies

Policy Stakement

Bob 1z pot authorized to perform CommunicationAction which has any attributes

Policy Changes

Figure 11 Policy not Authorizing Bob to Perform Communication Actions

Institute for Human and Machine Cognition

26

Role-Value Maps

The policy is now viewable in KPAT by selecting Bob or going to the Policy tab as shown in Figure 12.
KAO0S provides a traditional form based version (classic editor) of the policy editor if you are
uncomfortable with the hypertext version.

= KPAT][- KAoS Policy Administration Tool v2.0

| Domains and Actors | Actor Roles | Classes | Policies | Policy Templates | Ontology Yiew || Configuration | Palicy Disclosure || Ontology Query | Guard Management | User admiristration |

Policies Palicy Information

Showing policies for all actors, all actions Mame: BobMoTalk

| Mame Pricrity Id: policy-67bobfen-011b-0000-8000-0000asbbeedd

| [BlEotnoTak Actor: Bob
Prioity: 1 [& [¥ |

In Force:

Description: Bob is not authorized ta perform Communication Actions

Palicy Statement
Bob is not autharized to perform CommunicationAction which has any attributes

‘Wigw policy representation

Policy Analysis

|| Palicy

(¥~ Conflicting

(-] Making Redundant
-] Ovetlapped By

(drag and drop to adjust priority
or to create policy sets)

[Add Policy Set] [Save Policies in QWL [Edit] [Remave] [Save] [Load] [Save Policy in OWL] [Perform Analysis]

Puolicy Changes

Figure 12 Policy Tab Showing BobNoTalk Policy

Now using the tutorial GUI and the same parameters, press “Perform Communication Action”. You should
see the button turn red () indicating that the action was not authorized. When a policy check determines an
action was not authorized, it throws a KAoS Security Exception. Our tutorial GUI catches this exception
and turns the button red accordingly. The security exception can provide a lot of useful information about
the violation, but the details are deferred until the CSI Policy discussion in chapter 0.

¢ KAoS Tutorial

Create an agent ROBOT - name: Rover domain: [Team#a

Query for agents ihmc.us/Actor. P ANY -

Send message hello from: |Boh - to: I

|
Perform Move Action Bobh - requestor: Bob -
Login Bob - pwd: Result ‘
Agents Query Results
Boh [Rover
Raver
|

Institute for Human and Machine Cognition 27

Role-Value Maps

Figure 13 Action Not Authorized

4 Policy Reasoning Examples

Now that you have a working policy system, we will build on the example from chapter 3 to create
increasingly more complex policies. The goal of this section is to demonstrate the type of reasoning our
system can do and highlight classes of policies with functional demonstrations.

We will start by going to the tutorial script in your_kaos_root \kaos\scripts\tutorial and type “ant”.
After KPAT and the tutorial GUI start, create three agents:

1) Bob -ahuman on TeamA
2) RoverA —arobot on TeamA
3) RoverB —arobot on TeamB

KPAT should look like Figure 14 Three actors with Two Teams in KPAT. This will give us sufficient
structure to demonstrate several policy ideas.

- KAoS Policy Administration Tool v2.0

____Et__o!'_la_o!n_a_s_[g_l:a_g_sg_s___l?g!!gq_s ::_.PE!!‘:_YI‘_BE@“?E?; Ontalogy Yiew | Configuration _Eg!!cy Disclosure | Ontology Query Guard Managemenk | User Administration |

Selecked Entity Information
PolicyManagement Marne:
Teaméa Type:
Running Entities
j-dell
Gd86atd6fie7eced: GeFedash:
A Boh
A Roverh

Policies

Palicy Priority In Faorce? Cantral Action Author

Running Entities

mj-tell
E 8d86atd6fie7eceB:-GeFedash:
- A RoverB

Policy Description

Palicy Changes

Figure 14 Three actors with Two Teams in KPAT

Institute for Human and Machine Cognition 28

Role-Value Maps

4.1 Reasoning over Action Properties

The first example is adding properties to the action. When you add properties to an action, you are basically
adding context on which you can reason about. Taking our first example policy, we stated that Bob was not
authorized to perform Communication Actions. We may have wanted to restrict Bob completely, but we
may only have wanted to restrict Bob from communicating with RoverB. We will create a policy in the
same way as in section 3.14, except we will add an attribute. Click on “any attribute” and select “Add
attribute”. Now you should see a property add below the original text. Click on the property and select
“destination”. This is the hasDestination property we described in section 0. You should no see values are
[Select...]. Click on “Select” and choose “in the set”. This allows you to view instances. Select “RoverB”
from the list. The policy now reads that Bob is not authorized to perform a Communication Action which
has the attribute of all destination values in the set of RoverB. This sounds a little strange, but the
awkwardness comes from the vagueness inherent in our language. The policy in fact states our intent which
is that Bob is not authorized to perform a Communication Action that has the destination of RoverB. You
can add multiple properties to an action and the properties can themselves have properties, but we will keep
it simple to start. You can test this policy using the tutorial GUI. Bob should not be allowed to perform a
Communication Action with RoverB as the receiver. All other communication, including RoverB
performing a Communication Action with Bob as the receiver, should be authorized.

< KPAT][- KAoS Policy Administration Tool v2.0

Domains and Actors | Actor Roles | Classes | Policies | Policy Templates | Ontology Yiew | Configuration | Policy Disclosure | ©ntology Query | Guard Management | User Administration | Policy Editor

Hypertext Policy Editor
Policy IDv urm:kAoS#policy-69F3359d-01 1b-0000-8000-00002abbeodd
Falicy Name: | NoTakToRoverB
Description: | Bab is not authorized ta talk to RoverB
Priority: 71
Condition
This policy always applies

Policy Statement

Bob is not authorized to performn CommunicationAction which has attributes:
all destination values ate it the set {EoverB}

Palicy Changes

Figure 15 Bob is not authorized to Communicate with RoverB

4.2 Reasoning over Domains

In the previous policy we used instances (Bob and RoverB). While it is nice to be able to address instances
specifically, it is also handy to reference groups (or domains) for efficiency and generality. Let’s say that
we wanted to restrict all members on TeamA from communicating with all members on TeamB.

Institute for Human and Machine Cognition 29

Role-Value Maps

Start by removing the previous policy if it exists. This can be done by going to the “Policy” tab, selecting
the policy and pressing the remove button. Don’t forget to commit the change. Now go to the *“Actor
Roles/Classes” tab and select “MembersOfDomainTeamA” as in Figure 16.

< KPAT][- KAoS Policy Administration Tool v2.0

Domains and A[tnrsi Actor Roles f Classes | Policies | Policy Templates | Ontology ¥iew | Configuration | Policy Disclosure | Ontology Query | Guard Management || User Administration |

Ackor Selected Entity Information

Agent Name: MembersOfDomainTeamsa
Artificialdckor

DomainManager

Groupactor

Guard

Hardwaredctor

Human
MembersOfDomainPolicyManagement
MembersOfDomainTeama
MembersOfDomainTeame
MembershipReqgistry
Naturalackor

Person

Phiysicaldctor
PolicyMediator

Rabot

Softwaredctor

Type: Actor Class
h(s} urn:KAcSGroup# MembersOf DomainTeama

Policies applicable to MembersOfDomainTeanmd

Palicy Priarity In Farce? Contral Action Author

[E X R RS X E RS X E R NS N

Policy Description

Mew Policy Edit Remove Save ‘

Add Actar Class Edit Show Instances

Policy Changes

Figure 16 Actor Roles/Classes Tab in KPAT

We create the policy just like the previous one, except for values we select “of type” to view the classes and
then select “MembersOfDomainTeamB”. When done the policy should look like Figure 17. After
committing the policy, you can test it with the tutorial GUI. You should not be able to perform a
Communication action between members of TeamA and members of TeamB. You will be able to send
message from Bob to RoverA because they are both members of TeamA.

Institute for Human and Machine Cognition 30

Role-Value Maps

< KPAT][- KAoS Policy Administration Tool v2.0

Dormains and Actors | Actor Roles | Classes | Polcies | Policy Templates || Ontology Yiew | Configuration | Policy Disdlosure | Ontology Query | Guard Management || User Admiristration |

Hypertext Policy Editor

Palicy Iy urmiKAoS#policy-6a0a8dcs-011b-0000-8000-0000aabbecdd

Pulicy Name: | TeamAMoTalkTaTeamB |

Description: | Members of Teamd are not authorized to Communicate with members of Team

Priority: ll_J
Condition

This policy always applies

Policy Statement

MemnbersOfDomainTeatnd is not autharized to perforn CommmunicationAction which has attributes:
all destination walues are of type MembersOfDomainTeamB

Policy Changes

Figure 17 TeamA is not Authorized to Communicate with TeamB

4.3 Reasoning over Ontological Types

Similar to domains, ontological types allow use to generalize our policies. For this example we will state
that Robots are not authorized to communicate with humans. Again, remember to remove any old policies
and commit the change. Go to the “Actor Roles/Classes” tab and select “Robot”. Create a new policy
similar to the last, except select “Human” instead of “MembersOfDomainTeamB”. The policy should look
like Figure 18. You can test this policy with the tutorial GUI. Neither RoverA nor RoverB should be able to
perform a Communication Action with Bob as the destination.

Institute for Human and Machine Cognition 31

Role-Value Maps

< KPAT][- KAoS Policy Administration Tool v2.0

Damains and Actors = = Actor Roles | Classes | Polices Il : Policy Templates
i r T n =
_ Ontology Yiew Configuration Policy Disclosure Ontology Query (Guard Management User Administration Policy Editor | Palicy Editar |
Hypertext Policy Editor
Policy ID: urmikAoS#policy-6a125b%e-011b-0000-8000-0000aabbecdd
Falicy Name: | RobotshoTalkToHomans |
Description: | Robats are not authorized to commurnicate with humans
Priority: !1_-\
Condition
This policy always applies
Policy Statement
Robot iz not authorized to perform Cormunicationdction which has attributes:
all destination watues are of type Human
Policy Changes

Figure 18 Robots are not Authorized to Communicate with Humans

4.4 Additional Thoughts on Reasoning

The most difficult part of creating policies is determining how to model the policy itself. For example, in
section 4.1 we had a policy that restricted Bob from communicating with RoverB, but we probably also
want the reciprocal to be true. This could be modeled with a second policy. Figuring out what to model as a
domain, what to model as an ontological type and what to model as a property can be challenging. Like all
things in life, the best way to learn is by doing; so dive in and try a few things out!

Institute for Human and Machine Cognition 32

Role-Value Maps

5 Obligation Policies

This section will demonstrate how to build the second major type of policy; the obligation. The previous
examples were all authorization policies that prohibited certain actions. Obligations require an actor or
group of actors to perform some action based on an associated condition, which we call the trigger. The
basic format is similar to the authorization policy except that it includes a trigger action. Let’s say we
wanted our robot to beep before it moves, to warn people in the area. For example:

Robot is obligated to beep before it moves
actor modality action trigger condition

The main portion of this policy is very similar to that of an authorization policy. It has an actor (Robot)
which can be an individual or group. It also has a modality (obligated) and an action (beep). In this case the
action has no properties (context), but you can apply properties as we did for authorization policies. The
last portion of the policy is the main difference. The trigger condition determines when this policy applies.
Triggers typically have a temporal relation to the obligated action and we have provided terms to describe
that relation. You can select whether you want the obligation to occur before or after the trigger action.
Since actions are finite in time, you can also specify whether the before or after refers to the beginning or
end of the trigger action. You can also specify whether the obligation must start or be completed by the
specified time. This allows for several possibilities:

1) Start obligation before trigger starts

2) Start obligation after trigger starts

3) Start obligation before trigger finishes
4) Start obligation after trigger finishes

5) Finish obligation before trigger starts
6) Finish obligation after trigger starts

7) Finish obligation before trigger finishes
8) Finish obligation after trigger finishes

These timing mechanisms can be used to help clarify the precise meaning of the obligation. For example, it
would not make sense to beep after the movement has been completed, since the purpose of the obligation
is to warn people of the movement. To make the policy clear we would specify to finish the beep action
before starting the move action. This produces the desired result. The last thing to note about the trigger
condition is that the trigger action can also have properties that help define context, just like the obligated
action and authorization policy action.

We will now walk through the steps of creating and testing an obligation policy. We will use the same
tutorial code as before, but add a few pieces to make the obligation demonstration complete. We will start
by going to the tutorial script in your_kaos_root \kaos\scripts\tutorial and type “ant”. After KPAT
and the tutorial GUI start, create one agent (Figure 19):

RoverA —a robot on TeamA

Institute for Human and Machine Cognition 33

Role-Value Maps

£ KPAT][- KAoS Policy Administration Tool v2.0

Damains and Actors | Actar Roles ! Classes | Palicies | Pohéy Templates | bﬁtulogy’r\fiew boﬁf\gur&tioﬁ VPohcy Disclosure | Oﬁto\ogy Query | Guard Management

| User Admiristration

=]
L ' PolicyManagement

- Running Entities

-4l e

= . TeamA
=] & Running Eniities
=} mj-dell

Al

=B Sd86atabileTecef.caFA0BT 1
- B KAhoSDirectoryService

=B 8dBBabd6l3e7eces: She2af03:

Selected Entity Information
Name: RoverA

Type: Agent

D urn:KAoS#Roverd

Ontology Typss:

Supported OWL-5 Services:

Agent
Robot

0 Data

Agent Propertiss:

Property
REPLACE-REGISTRATION-INFO

Value
[false

Pulicies applicable to Roverd

Policy Friofity

In foree? Cantral Action

Policy Description

ew Policy

Folicy Changes

All policy changes have been committed to the Directory Service

Author

5.1 Extending the KAoS Ontology

KAOS provides a core ontology that provides the basic terms and relations necessary to build policies. To
make an interesting and simple obligation, we will extend the KAoS Core Ontology with the KAoS Robot
Ontology (http://ontology.ihmc.us/Robot/index.php). This ontology defines some simple robot actions (like

Figure 19 KPAT with Just one Agent

beep and move) among other things. To load the ontology, make sure you are connected to the Internet and
go to the “Ontology View” tab in KPAT (Figure 20).

Institute for Human and Machine Cognition

34

Role-Value Maps

Domains and Actors | Actor Roles | Classes | Policies | Policy Templates { Ontology View | Configuration | Policy Disclosure | Ontology Query | Guard Management | Liser Administration |

Mamespace List Filtered ~ List of Classes

B2 rdi-syniax-ns
wction ol
\ctionHistory ol
\ctionStatus .owl
Wctor ol
trikute. ol
wttributeAction owl

omputingPlaces.owl

ondition 0wl

DomsinManagemert ction.owl FHn e

Empty

Eritity .cw

roup .ol
AoS0rtologies ol
Message owl

Flace owl
Policy.ow

Policy ction.ovel
Service.owl

- List of Instances Defined
Eitustian. ol

el
df-scherma

ime rof
rmKAos
rk AeSGroun

OO0O0EROOOC0OO0O00O0ROO0O0O00O000CO00F

- List of Imported MNamespaces

Load Mamespace H Save Mamespace J

Palicy Changes

All policy changes have been committed to the Directory Service

Commit

Figure 20 Ontology View Tab

Press the “Load Namespace” button. You will see a small dialog box. Select (Figure 21).

¢ Load Namespace @

Flease enter a namespace OF, choose from the list:

| http:/fontology ihme.usfRobotfMames/ActualRobotClasses, owl

http: ffontology.ihme.us K aoSoOntologies, owl
http: flontalogy.ihme.us/Matification/MatificationOntologies owl
http: ffontology.ihme.us! JBIf Targeting/ TargetingOntologies . owl
http: ffontalogy.ihme.us!Army fArmyOntologies. owl
gy.ihme.us) k[T] alRabol y
http: ffontology.ibme.usComputing/ ComputingOntology, awl
http: ffontology.ihme, usfUsecase/LegacySystem/LegacySystemOntologies, owl
http: flontology.ibme.usf Java)JavaCntalogies. owl

.|>

[Load Marmespace] [Cancel

Figure 21 Load Namespace Dialog

After a few seconds the KAoS Robot Ontology should be loaded. You will see additional classes in the

view. You should see RobotAction.owl and if you select it you will see the various actions on the right side

of KPAT(Figure 22).

Institute for Human and Machine Cognition

35

Role-Value Maps

= KPAT][- KAoS Policy Administration Tool v2.0

| Damains and Actars || Actar Rales | Classes | Policies | Palicy _:r_gmplatasi Onkology View | Configuration | Palicy Disclosure | Ontology Query | Guard Management || User Administration
Mamespace List Filtered Lisk of Classes
22-rdf-syrtax-ns T —
' ction nyw\ E A.. http: ffontology ihme .usiRobot/RobotAction, owl# OpenGripper Al
o ctiorHistory ol 0 http: jfantology ibme.us/RobatRobotAction, owl#GaragePatral =
Inctionstatus 'le 0 http: jfontology ihme.us/RobotRobotAction. owl#Event
2 http:jfontology ihme.us/RobotfRobot Action, owl#Pager Communication
A ctar ovl |:|
nctuaRobotClasses awl @] http:jfontology ihme.us/RobotfRobotAction, owl#FindClearLanelnarea
3 2 http: ffontology ibme.usjRobot/RobotAction, owl#ExtendTimeout |
Attribute owl |:| 3 e w |
2 § hitrydtantalaa ihee siR ahabR ohat Ackion ol #5karHanitarnaEaetation b
AttributeAction .ol |:|
ComputingPlaces . owl |:| Hebarp e
Condtion ol |:| ST ORIpperes
Domsintanagementaction.owl O http:jfantalogy ihme usjRobatfRobat Action, owl#hasCaordinate ~|
Empty http: ffonkology ihmeus/RobotRobotAckion, owl#hasLocationMame 7|
Ertity .ol O http: fankology ihmeus/RobotfRobot Action, owl#hasSubjeck
Group.owl O http: jfontology ihme .usfRobotfRobot Action, owlthasClassification T arget
A0S Ontologies owl Ll http:fantology ihme.us/RobotRobatAction, owl#hasLaneiwidth |
Message owl O http:jfontology ihme.us/RobotfRobat Action, owl#hasPickureTarget |
Physicalfddress owl ¥ Ibbre tianbalno ihme siRahokB kot Aekion ol #hasClassiicationOhiect Tune |}
FhyzicalPlace.owl |
Physicalsecurity Action.owl O List of Instances Defined
PhysicalSecurityClasses owl |:| S o .
PhysicalSecurityOrtalogy ovel F Instance is emply
Place.owl |:|
Policy ol |:|
Policy &ction .ol |:|
Robot &ctionStatus.owl |:|
RobotClazzses.owl |:|
FobotOrtology .ow| |:|
RobotResources. owl [l List of Imported Namespaces
SFWIC_:E'DWI] Htt_p:,i.,l’ontolngy.ihmc.usiSpatiaIIﬁHEgﬁﬂdress.owl
Situation.ow| |:| E .
- > http: jfontology.ihme.us/Entity. owl
Spatialdction owl |:| E :
s http: jfontology ihme.usfaction.owl
SpatialOntology owl |:|
L - http:jfontology ihme.usfactor owl
SpatialRelations.owl |:|
Teamaction.awwl |:| »
Load Mamespace] [Save Namespace]
Policy Changes
All policy changes have been committed to the Directory Service Commit

Figure 22 Ontology View Tab after KAoS Robot Ontology is loaded

This was just a brief description of how to extend the KAoS Core Ontology. A full description can be
found in chapter 12.

5.2 Creating an Obligation Policy

Now that we have the necessary terms to create our first obligation lets get started. You should still have
your one agent running and the KAoS Robot Ontology loaded from the previous sections in this chapter.
Go to the “Actor Roles/Domains” tab and select “Robot”, since we want this to apply to all robots. Now
press the “New Policy” button and chose hypertext editor. Give the policy a name, a description and a
priority of 1. Select the modality of “obligated.” You will see the trigger condition template added on the
line below. Select the action of “Beep.” You will notice that more actions are available since we loaded an
additional ontology. All of these actions are applicable to things that are from the robot class. Now in the
trigger action select the actor to be the class of “Robot” and the action to be “Move.” We will not use any
action properties for this simple example. When you are done, the policy should look like the one shown in
Figure 23.

Institute for Human and Machine Cognition 36

Role-Value Maps

< KPAT][- KAoS Policy Administration Tool v2.0 - OX

| Domains and Actors | Actor Roles | Classes | Policies || Policy Templates | Ontolagy View | Configuration | Policy Disclosure | Ontology Query | Guard Management | User Administration | Policy Editor -

Hypertext Policy Editar

Policy ID: urn:kAoS# policy-fac0l 258-01 1b-0000-8000-0000aabbeedd

Policy Name: | RobatsMustBeep

Description: | Robats must beep before moving to warn peaple

Priority: ‘_I_i
Condition

Thiz policy altways applies

Policy Statement

Robot iz obligated to start performing Beep which has any atiributes
before Fobot starts performing hlowe which has any attributes

Save Cancel

[Commit palicy later

Policy Changes

All policy changes have been committed to the Directory Service Zommit

Figure 23 Obligation Policy Example

5.3 Testing Obligations

A simple way to test your obligation is using KPAT’s Policy Disclosure Tab. Go to the tab, select “Get
Obligations” from the list of the left side, select “RoverA” as the actor on the right side, and select “Move”
as the action on the right side. KPAT should now look like Figure 24.

Institute for Human and Machine Cognition 37

Role-Value Maps

KPAT][- KAos Policy Administration Tool v2.0

licies || Policy Templates i| Cnkology Yiew |I Configuration ‘ Palicy Disclosure | Onkology Query || (Guard Management || User Administration‘

| Domains and Act ctor Rales | Class:
Policy Test

Check Permission
Get Allowable Yalues

This query allows you to determing which actions are obligated by the given trigger action,

Previous queties Action Instance Descripbion

Actar: Roverd Actor: [Roverd J

Action: Mave

Context: Action: !Move P |
Context: | property waluels)

Policy Changes

All policy changes have been committed to the Directory Service Zommik

Figure 24 Policy Disclosure for Beep before Moving Obligation

Now press “Get Obligations” and you should see the obligation to beep as shown in Figure 25.

Get Obligations Result

\j) 1Pu:n.rex:k is obligated to perform Beep with properties:

involvedPolicy = [urn:KLoS#policy-fac0l255-011h-0000-8000-0000aabbeedd]
alternativelctor = [http://ontology.ihme.us/Robot/RobotClasses.owl#Elue, http://ontology.ilwe. us/Robot/RobotClasses.owlfGold,
‘perfﬂrmedﬁy = [urn:KioS#Roveri]

Figure 25 Obligation Disclosure Results for Beep before Moving Obligation

5.4 Implementing Enforcement for Obligations

Use the same method used for checking authorizations to check for obligations. You just call the
enforcePolicies method which does the following:

PolicyChecking policyChecking = CSlIFactory.getPolicyChecking();
Vector<ActionInstanceDescription> obligations = policyChecking.findPolicyDecision(aid, null);
for(ActionlnstanceDescription action: obligations)

{

performAction(action);

Institute for Human and Machine Cognition 38

Role-Value Maps

We learned in chapter 3.12 that this method throws a KAoSSecurityException if the action is not authorized.
It also executes any obligated actions using Java reflection. There are many ways to provide enforcement,
which we discuss in chapter 10. In this example we are providing our own enforcement by checking the
action and executing any obligations automatically. The main issue with obligations is how to execute
obligations. Authorizations only require the enforcer to be able to prevent actions. Obligations must map
down to concrete implementation in the end. For our example, we want to be able to make a robot beep, or
more specifically execute a Beep method on our SimpleAgentRobot class. We use Java reflection to
accomplish this task. The code to perform the reflection is in the performAction method. It requires the
method name to match the ontological name. It also would require the action properties to be consistent
with the method parameters, but we will not be using any properties for this first example.

Now if you select rover in the drop down menu and press the “Perform Move Action” button is press
(Figure 26), you will see a notification about the action in the command window like this:

[java] RoverA: moving

If the obligation policy from section 5.2 is in force, you will see the beep action occur before the move
action like this:

[java] RoverA: BEEP!
[java] RoverA: moving

You now have a working obligation! It is important to note that this enforcement example is very primitive
and just designed to get you started. It did not take into account the information about timing and
sequencing, even though it was available. The Beep came before the move simply because it was coded to
perform obligations before executing the trigger action. There are more advanced ways to perform
enforcement, but they are not covered by this introductory example.

¢ KAoS Tutorial

Create an agent ROBOT - name: Rover domain: |TeamA
Query for agents ihi usifctor. Il - ANY -
Send message from: |Boh - to: |Boh : I
Perform Communication Action
X - requestor: [Boh | > |
Login Bob - pwd: ‘ Result
Agents Query Results

Figure 26 Perform Move Action

Institute for Human and Machine Cognition 39

Role-Value Maps

6 Policy Prioritization

Itis very likely that if you make enough policies, they will eventually conflict in some ways. It is also very
common, to desire to add an exception to a general rule. When policies conflict in some way, there must be
a mechanism to determine which policy has precedence. KAoS provides a few ways to handle policy
prioritization.

6.1 Priority integer

The simplest way is to use the priority integer associated with each policy. Although this way is not very
elegant, it is very simple and is often sufficient. The higher integer value policy takes precedence over the
lower integer value policy. Let’s do an example using the basic setup in chapter 4 with two teams each
having one robot. We will then load the ontology and add the general obligation for robots to beep before
moving as in chapter 0. Now when each robot is tasked to move, you should see the beep message:

[java] RoverA: BEEP!
[java] RoverA: moving
[java] RoverB: BEEP!
[java] RoverB: moving

Now consider that RoverB is far away from any people and we would like to conserve power by not
forcing it to beep unnecessarily. Let’s create a second policy that states that RoverB is not obligated to beep
before moving. First go to the “Domains and Actors” tab and select “RoverB.” Now press the “New
Policy” button and create a similar obligation as the first. The new policy should refer to RoverB instead of
all Robots and it should be a negative obligation (not obligated) instead of a positive one. Also make sure
the priority is 2 instead of the priority of 1 used on the first policy. The final policy should look like Figure
217.

. [O[X]
Domains and Actars | actar Roles | Classes || Policies || Policy Templates | Ontology Yiew | Configueation | Policy Disclosure | Ontology Query | Guard Management | User administration | Policy Editor

Hypertext Policy Editor

Policy ID urm:KAoS# policy-fbadb01 a-01 1b-0000-8000-0000aabbocdd
Policy Name: | RobotBOoeshotBeep

Description: | Robot B is not obligated to beep before moving

Priority: | 2

Condition
This policy always applies
Policy Statement

FowerB is not obligated to start performing Beep which has any attributes
before RoverB starte perfortning Move which has any attributes

Save Cancel

[Commit policy later

Policy Changes
All policy changes have been committed to the Directory Service i Refresh

Figure 27 Negative Obligation Policy

Institute for Human and Machine Cognition 40

Role-Value Maps

Now if you go to the Policy tab you should see both policies. You can view there details by selecting either
one. When you execute the “Perform Move Action” for each robot you should not get a Beep message from
RoverB, because the higher priority policy waived the obligation:

[java] RoverA: BEEP!
[java] RoverA: moving
[java] RoverB: moving

*** NOTE: The policy priority adjustment arrow buttons on the policy tab do not work reliably. Edit the
policy directly to change the priority for now

*** NOTE: The automatic policy conflict detection and deconfliction is disabled until KAoS has been
converted to use Pellet.

*** NOTE: We are currently working on mechanisms to allow logical policy precedence constraints to be
used as a method of policy prioritization as an alternative to the exclusive use of numeric priorities. This is
a much more powerful and scalable approach than using numeric priorities alone.

Institute for Human and Machine Cognition 41

Role-Value Maps

7 Role-Value Maps

Originally KAoS used only OWL-DL (initially DAML), which had difficulty dealing with situations where
it was needed to define policies in which one element of an action’s context depended on the value of
another part of the current context. Some examples include:

Loop Communication Action

Relation to the current location, time, other aspect of the current action instance context
Relation between Trigger Action and Obliged Action

Relation between a condition, state or history and the current action

These requirements can be fulfilled by role-value-map semantics (see page 94 in The Description Logic
Handbook). Maps allow policy to express equality or containment of values that has been reached through
two chains of instance properties. KAoS was equipped with role-value-map semantics to defined policy
actions when necessary.

It is often useful to refer to aspects of a policy from within the policy itself. This sort of runtime binding
enables the creation of general policies with specific context based application. The example we will use is
providing feedback. The idea is that if somebody asks you to do something, you should let them know
when it is done. Specifically, our policy will state that if a robot is tasked by a requestor, the robot should
notify the requestor when the task is finished. We will connect this with our previous “Beep before you
Move” obligation that we applied to robots.

7.1 Creating a Policy Using Role-Value-Maps

Start the tutorial up as in chapter 0, loading in the Robot ontology. Next create two agents on TeamA; Bob
a human and Rover a robot. KPAT should now show both agents as in Figure 6. We will now create our
policy by going to the Actor Roles/Classes tab and selecting Robot. Then press the New Policy button and
select the hypertext editor. Name the policy and give it a priority of 1. Now fill in:

Robot is obligated to start performing CommunicationAction which has any attributes

This will create a line for the trigger action. Before we provide attributes for the obligated action
(CommunicationAction) we will first add the trigger action as follows:

after Robot finishes performing Action which has attributes
all status values are of type Finished
all requestedByY values are not in the set of this action’s performedBy values

So the trigger action for this obligation is any action, or specifically any action that extends Action from the
KAO0S ontology. The trigger action must have a status of Finished (which includes Completed and
Aborted). Our first direct use of the role-value-map is in the last line above, where we reference the current
action’s properties. The performedBy property indicates which actor is actually performing the action. The
requestedBy property indicates who has requested this action to be performed. What the last line is saying
is that requestor should not be the same as the performer. The goal of this policy is to provide feedback to
another actor. If the requestor is the performer (i.e. a self generated plan) then there is no reason to provide
feedback to oneself. Now that we have the trigger action defined, let’s back up to the obligation again and
add:

Robot is obligated to start performing CommunicationAction which has any attributes
All destination values equal the Trigger action’s requestedBy values
All carriesMessage values equal the Trigger action’s triggerAction values

Institute for Human and Machine Cognition 42

Role-Value Maps

Here we can see some role-value-mapping again as both properties reference the trigger action. The first
says that the destination should be the requestor (i.e. send this feedback to the person who asked you to do
the task). The second property says that the message should be the trigger action itself, including the
current status. The completed policy should look like Figure 28.

2 KPAT][- KAoS Policy Administration Tool v2.0

| Damains and Ackars | Actor Roles | Classes | Policies | Palicy Templates | Ontalogy Yiew Configuration || Palicy Disclasure | Ontolagy Query || Guard Management | User Administration | Policy Editar

Hypertext Palicy Editar

Policy ID: urm:KAoS# policy-086C76a0-01 13-0000-8000-0000aabbecdd

Policy Mame: | action Status Feedback

Description: | Motify requestor when requested Action is Finished (including Completed, Failure, and Aborted) except for autonomous {self-requested) actions.

Priority: 1|
Condition

This policy always applies

Palicy Statement

Robot is obligated to start perfortning CommunicationAction which has attributes:
all destination values equal the Trigger action's requestedBy values
all carrieslvleszage values equal the Trigger action's friggerAction walues
afler Robot finishes performing Action which has attributes:
all status walues are of type Finished
all requestedBy walues are not in the set of thic action's performedBy values

Save Cancel

[Cammit palicy later

Palicy Changes

All policy changes have been committed to the Directory Service ik

Figure 28 Role-Value Maps - Action Status Feedback Policy in KPAT

These six lines of hypertext capture a very powerful concept of feedback in a very general way. It is
external to any agent or robot code and visible and accessible to any human operators.

7.2 Role-Value-Map Implementation Changes

There are no general implementation changes to deal with role-value-maps, but our example required two
specific modifications. To enforce this new policy, we need add status to an action after it completes and
check policies after an action as well. Looking at the Move method of SimpleAgent:

public void Move(String requestor) throws Exception

/1 build aid

HashMap properties = new HashMap();

properties.put(ActionConcepts.requestedBy(), NamespaceValidator.validateURI(requestor));

ActionInstanceDescription aid =
buildActionInstanceDescription(“http://ontology.ihmc.us/Robot/Teleoperation.owl#Move", properties);

/I perform enforcement
enforcePolicies(aid);

/I perform move

Institute for Human and Machine Cognition 43

Role-Value Maps

System.out.println(_actorDesc.getAgentNickname() + *': moving as requested by " + requestor);

/I move is now finished, so check policies again

OntPropertyDescription status = new OntPropertyDescriptionlmpl(ActionStatusConcepts.hasStatus());
status.setValue(ActionStatusConcepts.DefaultFinished ActionStatus());

aid.addProperty(status);

/I perform enforcement
enforcePolicies(aid);

}

What we have added is the section after performing the move where we add a status property that has a
value of DefaultFinishedActionStatus to the original Move action. This strange value is because OWL-DL
does not allow classes to be values of property, so we simply define default instances and they have the
same effect. Additionally we added another policy check. There are more general ways to architect the
policy checking mechanism so that it is not part of every method, but we have done it this way in the
tutorial to make it easier to follow along.

While ontological classes allow for general reasoning over classes and very general policies, they do not
provide the mechanics necessary for runtime binding of instances. Role-value-maps extend the ontological
class functionality by allowing general policies to have runtime binding.

7.3 Testing the Role-Value-Map Example

With our actors registered and our new policy in place we are ready to test it. In the tutorial GUI, select
Rover from the dropdown menu next to the Perform Move button. Make sure Bob is selected in the
requestor dropdown menu as in Figure 29. Now press the Perform Move button. The output should be:

[java] Rover: moving as requested by Bob
[java] Rover sent message to urn:KAoS#Bob: Move DefaultFinishedActionStatus
[java] Bob received message from Rover: Move DefaultFinishedActionStatus

The first line indicates that the move is being performed and who requested it. The second is the obligation
being fulfilled by the robot to provide feedback when done. The third line is the requestor receiving the
feedback.

Create an agent ROBOT - name: |Raover domain: [TeamA
-

Query for agents ihmc.usiactor. g - ANY
Send message from: Bob tor H
Perform Comrmunication Action
I Rover - requestor: Bob -
Login Boh - pwd: Result 1

Agents | Query Results

Boh
Rover

Figure 29 Perform Move with Requestor (Tutorial GUI)

Institute for Human and Machine Cognition 44

Role-Value Maps

8 Reasoning about History and Time

The richness of context is what makes a policy system useful. One important aspect of context that can be
very valuable is referring to history or past events. For example, you may want to limit the number of login
attempts on a system to be three. This can be represented by a negative authorization policy that has context
specifying three failed login attempts. The trouble with representing this is that the action being checked
should not be responsible (or trusted) to provide its own history. This means that the fourth attempt would
be just another “Login Action” with some credentials. Somewhere, the system must maintain a history of
events so that we can reason about the current action in the context of previous ones.

Our example is a simple authorization policy to prevent a third attempt to login if two attempts have failed
in the previous thirty seconds. This will demonstrate both the event precedence (two previous attempts) and
the temporal reasoning (within a specified time period). The first step is to run the tutorial script in
your_kaos_root \kaos\scripts\tutorial by typing “ant” as in section 3.3. Next we will load an extension
ontology containing computing terms as in section 5.1. The ontology to select is the ComptingOntology.owl
as shown in Figure 30. This ontology contains the “login action” which we will be using.

4 Load Namespace

Please enter a namespace OR choose from the list:

http:jfontalagy.ihme. usfCormputing/CormputingOntalogy . owl

http: ffontology.ihme, us KAoSOntologies owl =
|http: {fonkology ihme, usMatificationfMatificationontalogies, owl

|http: {fonkology ihme, us/JBI{ Targeting TargetingOntologies owl

|http: {{orkolagy ihme, usfarmy Ay Ontalogies. owl

;http: Jfontology ihme, usfRobatMames/ActualRobotClasses. owl

kEp: | fontalogy.ihme, us S omputing) ComputingOntalogy:., owl
|htkp: ffontolagy ihme. us/Usecase Legacy SvstemfLegacySystemOntalogies. owl
;h.ttp: Hontolagy ihme, usfJava)JavaCntologies, owl

[Load Mamespace] [Cancel]

Figure 30 Loading Computing Ontology

Next we create an authorization policy as in section 3.14 except this time we will add historical context.
Start by going to the Actor Roles/Classes tab and selecting Actor. Now press the New Policy button and
select the hypertext editor. Now we will create a policy that says “Actors are not authorized to login if they
have failed to login three times previously.” Our first version will look like Figure 31.

Institute for Human and Machine Cognition 45

Role-Value Maps

< KPAT][- KAoS Policy Administration Tool v2.0

Hypertext Policy Editor

Palicy ID: urmikAoS#policy-bdFa59db-01 1c-0000-3000-0000aabbccdd
Paolicy Mame: .i.ogu-n-l.i.rﬁit. i

Description: I

Priority: |1 |
Condition

This policy applies when Actor has performed Loginfction at least 2 times in the last 30 seconds with attributes
all status walues are in the set {DefauliFailured ctionStatus
the performedBy value equals the Control action's performedBy walues

Policy Stakement

Actor is not authorized to perform Logindction which has any attributes

Save Cancel

[Commit palicy later

Folicy Changes

All policy changes have been committed to the Directory Service it

Figure 31 Login Limit Policy

You will notice the Policy Statement section looks like a normal negative authorization policy. What we
have added is the Condition section. This section typically says that “This policy always applies.”
However, we have added historical context that refers to the status of previous login attempts. Specifically,
we refer to when Actors have performed LoginActions that have failed (bad password) at least two times.
We will include the temporal portion that limits the context to the last thirty seconds. Setting the time to
zero results in an unlimited (all recorded history) context. The LoginActions have an action property of
status with a value of DefaultFailureActionStatus to indicate that the previous login attempts failed.
Additionally, they include the requirement that the historical records considered where performed by the
same actor as the action currently under consideration. If this attribute is omitted, a failure of any agent will
block all agents from logging in.

*** Note: there are currently two status concepts in the ontology; one in ActionStatus.owl and one in
Entity.owl. These have different meanings and will not match each other. We are working to disambiguate

them in KPAT. For now you can view the OWL representation to ensure you have selected the correct one.
*kk

Save the policy and you are ready to test it. Create two agents as in Chapter 3. By default the password for
any agent will be its name in lower case. Select an Agent from the dropdown menu next to the Login
button. Enter the agents name in all lower case in the password text field. Press the Login button and the
results indicator should turn green as in Figure 32.

Institute for Human and Machine Cognition 46

Role-Value Maps

£ KAoS Tutorial

Create an agent ROBOT - name: Rover domain: TeamA

Query for agents ihmc.usiActor. - ANY -

Send message from: Bob v to:

Perform Communication Action
Perform Move Action Boh b4
Lugin Bob - pwd: bob ‘_

Agents | Query Results
Bob
Rover

Figure 32 Login Success

Now change the password to something else and press the Login button again. You should see the results
indicator turn yellow and display a count of the number of failed login attempts, as in Figure 33.

£ KAoS Tutorial
Create an agent ROBOT - name: Rover domain: [TeamA
Query for agents ih usifctor. - ANY -
Send message from: |Boh - tor
Perform Communication Action
Perform Mave Action Boh >
Login Bob - pwd: bad H Invalid Password #1 ‘
Agents Query Results
Boh [
Raver
_—

Figure 33 Login Invalid

After two failed attempts, as specified in the policy, the agent will no longer be authorized to login and the
results indicator will turn red as in Figure 34.

=
£ KAoS Tutorial (=]t
Create an agent HUMAN b4 name: Rover domain: TeamA
Query for agents ihi usifctor. 0l - ANY -
Send message from: |Boh - to:
Perform Communication Action
Perform Move Action Boh >
Login Bob - pwd: |bad |_
Agents l Query Results
Bob
Rover

Figure 34 Login Not Authorized

Try logging in with the correct password and you will also be denied. After thirty seconds, login attempts
will be authorized again and if the correct password is used, they will login successfully.

Institute for Human and Machine Cognition

47

Role-Value Maps

Now we will take a look at the code behind this example. SimpleAgent has a method called LoginAction
that contains all the code used for this example. As in the previous examples, we will be demonstrating
how to perform self enforcement. For history based policies this means tracking the actions in a way
consistent with history monitoring and policy evaluation. KAoS provides a history monitor through CSI as
shown in the LoginAction:

HistoryMonitor historyMonitor = CSlFactory.getHistoryMonitor();

Now we need to log any failed login attempts. For the sake of this tutorial, we do this by checking the
password and if it is not valid, we add a failure status and tell the history monitor about the attempt:

OntPropertyDescriptionImpl hasStatusProperty = new OntPropertyDescriptionlmpl(ActionStatusConcepts.hasStatus());
hasStatusProperty.addValue(ActionStatusConcepts.DefaultFailureActionStatus);
logginAlID.addProperty(hasStatusProperty);

historyMonitor.logEvent(logginAID);

The KA0S Guard also has access to the history monitor and performs the necessary checks for policy
decisions. Note that the action being checked is always just a normal login action with username and
password properties and makes no reference to history.

8.1 Multiple History Conditions

To add additional conditions simple click on the “[+/-]” at the end of the first condition. This will allow you
to add an AND condition or remove a condition. To test this we will run the same login example as in the
previous section. Once the policy is in ready, click on the “[+/-]”, circled in Figure 35, to add an additional
history condition. Then add the history condition that any actor has performed a Communication Action 1
time in the last 60 seconds. This condition is strictly to demonstrate the multiple condition policy and is not
particularly meaningful. The policy should now look like Figure 36. Now have Bob login with the incorrect
password multiple times, as in the last section, and it will not be blocked because of the AND condition.
Press the “Perform Communication Action” button and then try to login and it will be blocked as shown in
Figure 37, assuming the communication action occurred with 30 seconds of the two login failures.

Institute for Human and Machine Cognition 48

Role-Value Maps

B KPAT][- KAoS Policy Administration Tool v2.0

File Corrnection ‘iew

| Domains and Actors % | Actor Roles | Classes % | Policies & | Ontology View % |Pnl|cyEd|tor X |

Hypertext Policy Editar

Policy ID: urm:kKAoS# policy-08332858-01 22-0000-8000-0000asbbecdd

Palicy Mame: [lagin imi|

Description:

Priority:

:
Condition
This policy applies when

any Actor has performed LoginAction at least 2 times in the last 30 seconds with attributes:
all status walues are in the set {DefauliFailured ctionStatus

‘ perfurmeng wvalue equals the Control action's performedBy walues

Palicy Statement

Any Actor is not authorized to perform Logindction which has any attributes

Save Cancel

[Commit palicy later

Policy Changes

All policy changes have been committed to the Directory Service Commit Digcard

Figure 35 Adding multiple conditions

Institute for Human and Machine Cognition 49

Role-Value Maps

B KPAT][- KAoS Policy Administration Tool v2.0

File Correction View

|Dnma\nsandActors % | Actor Roles | Classss = |‘ Policies % ‘iOntnlogyV\ew E] |Pnl|cyEd|tor % |

Hypertext Policy Editar

Policy ID: urm:kAoS# policy-08501 c96-0122-0000-5000-0000aabbeedd

Palicy Mame: [multiple Conditions

Description:

Priarity: 1_

Condition

This policy applies when
All of
any Actor has performed LoginAction at least 2 times in the last 30 seconds with attributes:
all status walues are i the set {DefauliFailuredctionStatus)
the performedBy walue equals the Control action's performedBy walues

2]

any Actor has performed Communicationdction at least | times in the last 60 seconds with any attritites [+/-

Palicy Statement

Any Actor is not authorized to perform Logindction which has any attributes

Save Cancel

[Commit palicy later

Policy Changes

All policy changes have been committed to the Directory Service Commit Discard

Figure 36 Multiple History Conditions

KAoS Tutorial
Create an agent ROBOT - name: anel’i domain:
Query for agents ihmc.us/Actor. 0l - % ANY -
Send message ‘ from: [Bob -
Perform Move Action Bob »| requestor: [Bob [+]
Login Boh - pwd: [bob
Change State Place urn:KAoS#mj-dell -
Agents Query Results
Bob
Rover

Figure 37 Login Not Authorized after two failed attempts AND a Communication Action

Institute for Human and Machine Cognition 50

Role-Value Maps

9 The API - Common Services Interface (CSI)

KAOS provides the basic services for distributed computing, including message transport and directory
services. Because the services are accessed through a well-defined Common Services Interface (CSI),
application developers can selectively use subsets of its capabilities (e.g., registration, transport, publish-
subscribe, domain management, remote request forwarding, queries) as appropriate. Documentation can be
found at http://ontology.ihmc.us/WorkArea/KAoS/doc/csi-api/index.html.

There are several key services provided by CSI. They include:

e Transport
» Registration

* Request

e Query

» Publish/Subscribe
e Policy

9.1 Transport

Transport provides an abstraction to the underlying message passing mechanism, a simple way to bind to a
given transport and send messages allowing applications to tailor their own communication protocol.
Transport gives you low level access to the message transport, including binging to the transport and
sending messages. To access the message transport simply:

transportSupport = CSIFactory.getTransportSupport();
CSIFactory.setCurrentTransport(dsTransportName);

Then you can send messages by:

transportSupport.sendMessageTo(_actorDesc, receilverDesc, message);

To receive messages, you must implement MessageL istener and bind to the transport:
transportSupport._bindMsgListenerToTransport(this, name, _actorDesc);

9.2 Registration

Registration provides the ability to publish an entity, its capabilities and status and update both the
capabilities and status. Registration allows you to register an entity, assign properties to it, create groupings
(domains). There is also a QueryRegistration for querying to get information about actors and there
properties. The basic registration looks something like this:

registration = CSIlFactory.getRegistration();
registration.registerEntity(_actorDesc, true, true);

To query for agents use a QueryRegistration as follows:

query = CSlFactory.getQueryRegistration();
result = query.getAllAgents();

9.3 Request

Request allows one entity to send a request to another typically to execute some action. The actions and
properties of the action are specified using terms from the ontology. It is built on top of the registration and
transport layers.

Institute for Human and Machine Cognition 51

Role-Value Maps

Request

Lacal JVM
UserApplication

Feedback
Receiver

v csl
Request Manager = |

Registration Transrorta.tion|

Local JVM
User Applicati
csli
|Method Call Reques Har'i:lle;|

’ Request Receiver)

Figure 38 Request architecture

9.4 Query

Query allows an entity to retrieve information about another entity. The allowable queries are specified in
the ontology, as well as the properties associated with each query. This is a “pull” method for getting

information from an another actor.

9.5 Publish/Subscribe

Subscribe defines the operations to register, deregister and notify observers when the state of this
observable changes or an event occurs that is associated with the observable. This is a “push” method.

Subscribe

Local JVM
UserApplication

Jb csl
l bserver Manager l

RemoteKAoSObserver

Registration

Local JVM
User Applicatid
Csl
|Method Call Requesf{Har) :iler|

| KAoS Observable |

Figure 39 Subscribe architecture

Institute for Human and Machine Cognition

52

Role-Value Maps

9.6 Policy

Policies allow constraints to be applied to an entity. They can be dynamically modified to adjust the bounds
on a particular entity based on the current context. The policy interface allows you to generate and modify
policies, but also query them to understand the applicable policies and allowable ranges.

10 Enforcement

10.1 Action Instance Description

As we discuss earlier an ActionInstanceDescription(AID) represents an action. For example, let’s define an
AID for the RadioTransmissionAction with point of origin specified by latitude and longitude for the
previous created RadioSpectrumPolicyAgent :

ActionlnstanceDescription radioTransmAID = new
ActionlnstanceDescriptionlmpl (aidprefix + transimttedAlDnum,
RadioActionConcepts.ChangeFrequancyAction,
radioSpectrumPolAgent.getGUID());

where aidprefix isastring that we can define as radioTransmitionAlD,
transimttedAlDnum is the number of constructed AlDs and the RadioActionConcepts isthe
control action class that defined the ChangeFrequency action.

10.2 Checking Authorization

To check authorization we are going to define a property called hasTransmissionPower and add a value to
it, for instance a double usedPower:

OntPropertyDescription hasTransmissionPower = new
OntPropertyDescriptionimpl (RadioEntityConcepts.hasPower());

hasTransmissionPower .addValue ((new Double(usedPower)).toString());
radioTransmAlD.addProperty(hasTransmissionPower) ;

Then we define the OntPropertyDescription for the latitude and longitude and add the property to the
radioTransmAID from section 10.1:

OntPropertyDescription hasTransmissionLocation =
createXmsnLocationProperty(transimttedAlDnum, latitude, longitude);
radioTransmAlD.addProperty(hasTransmissionLocation);

Then check authorization catching a KAoSSecurityException statement. If an exception is thrown means
that is not authorized, otherwise it is granted:

PolicyChecking policyChecking = CSlFactory.getPolicyChecking();
policyChecking.checkPermission(radioTransmitAID, null);

The KAoSSecurityException will give the user a statement indicating why the policy was not granted. For
instance "Original action not permitted. Obligations not attempted."”, "Original action permitted. Obligation
status inconsistent with action.”, "Original action permitted. Service required by obligations failed." and
"Original action permitted. Obligation actor not locatable."”

Institute for Human and Machine Cognition 53

Role-Value Maps

10.3 Checking Obligations

For checking obligation we are going to use the findPolicyDecision method and will catch a
KAoSSecurityException. The operation will give us a vector of AIDs which are going to perform the action
if no exception is thrown. If an exception is thrown, the statement will indicate the problem as we described
on section 10.2:

PolicyChecking policyChecking = CSIFactory.getPolicyChecking();
Vector<ActionlInstanceDescription> obligations = policyChecking.findPolicyDecision(aid, null);
for(ActionInstanceDescription action: obligations)

{
3

performAction(action);

Each AID in the vector is ordered in a sequence of execution and each AID has a property related to the
execution of the action. For instance the property hasStatus defined in the basic KAoS ontologies as
http://ontology.ihmc.us/ActionStatus.owl. We can define a property value BEEP. Then using the robot
example, we can say that “A robot is obligated to BEEP before the robot start moving”, where start moving
is the trigger condition.

When a guard has to enforce an obligation action, the guard constructs an obligation AID and tries to match
it to other registered agents that can perform that action. If no agent is found, the obliged action is directed
to the agent with the trigger action.

Obligation policies can define kaos.policy.enforcement.obligation.ControlActionlnstantiator The CAl
instantiates an AID for the control action based on the specified BasicActionDescription for a control
action and a trigger ActioninstanceDescription. The instantiators are added to the guard to check for
obligation violations or to look for other actors to enforce an obligation action. The CAl add Role-Value-
Maps (discussed in section 7) . They fill in the possible values for the role value mapped properties in the
controls action by following the role value path in the trigger action and querying for the possible values.
For example:

control.hasDestination = Trigger.performedBy.isTeamMemberOf.hasLeader

10.4 Policy Base Configuration

For checking configuration for the radioTransmAID defined in 10.1, we start getting a list of properties
names and add a property hasPower and obtain the kaos.core.csi.policy.PolicyAdvice from the CSIFactory
which defines operations to advice the user as to which property values are allowed/forbidden for the given
action based on a policy. Then we call the method getConfiguration(),which is used when the
agent/enforcer has only partial information about an action and would like to determine what range of
properties can be allowed by the policy set. The agent/enforcer partially fills an ActioninstanceDescription
object and sends it to the method, which finds those policies that are applicable to this action and contain
the given property. The method will then select only those values for the given properties that will not
conflict with higher priority policies containing the given properties. The list propertyNames is containing
the properties for which values are to be found. The object radioTransmAID will be used to find applicable
policies. The boolean argument if is set to 'true’, will result in returning only these values for the missing
specified property which would satisfy some policy if used alone. The null argument refers to the
PolicyDecisionObserver, an entity interested in receiving updates whenever policy decisions change.

List<String> propertyNames = new ArrayList<String>();
propertyNames.add(RadioEntityConcepts.hasPower());
PolicyAdvice myPolicyAdvice = CSlFactory.getPolicyAdvice();

Institute for Human and Machine Cognition 54

Role-Value Maps

Then, we will get the power configuration as:

List<ActionlnstanceDescription> powerConfiguration =
myPolicyAdvice.getConfiguration (propertyNames, radioTransmitAlD, true,
null);

The powerConfiguration list contains multiple ActionlnstanceDescription objects which contain the
allowed values for those properties.

10.5 State Monitor

Sensors which monitor the state of the system must implement the kaos.core.csi.extension.StateSensor
interface. A StateSensor implements the method getOntological Attributes(), which returns a list of state
types that the StateSensor is capable of monitoring. Upon startup, the StateManager reads a configuration
file, instantiates each StateSensor listed in the configuration, and registers the StateSensor with itself as a
listener for policy state conditions, based on the types of states that the StateSensor is interested in.

The StateManager notifies a StateSensor about policy state conditions and obligation triggers, by calling
StateSensor.registerinterest(OntClassInfo stateCondition), and its counterpart deregisterinterest() when the
condition is no longer relevant (inherited from StatelnterestListener interface).

The StateSensor is responsible for notifying the StateManager with information about the state(s) it is
monitoring. A static instance of the StateManager can be obtained by calling StateManager.getInstance().
Upon learning about a relevant policy state condition (via registerinterest()), the StateSensor may create a
new instance of a State (using OntInstanceDescriptionlmpl) and register it by calling
StateManager.registerState().

The StateSensor should update the State instance when the monitored state changes, by calling
StateManager.updateStateProperty() (or StateManager.updateStateProperties(), if multiple properties have
changed). Likewise, when a state is no longer relevant to the current policies (via deregisterinterest()), the
StateSensor should call StateManager.deregisterState().

In the example below, the policy state condition specifies a particular host to monitor. The StateSensor gets
the hostname from the passed-in condition, and registers a new state instance with the StateManager for the
host being monitored. The StateSensor then updates a property of the state instance, marking the host as
currently being “down”.

public void registerInterest(OntClassInfo state)
{
/l get an instance of the StateManager
StateManager stateManager = StateManager.getInstance();

Il query the state to see which host we should be monitoring
String host = null;
Set<String> properties = state.getPropertyNames();
try {
if (properties.contains(HOST_PROP)) {
host = state.getInstancesForProperty(HOST PROP).iterator().next();
}
}

/I create a new state instance and register it
if (host I=null) {
String stateld = NamespaceValidator.validateURI(“fakeStateldFor” + host);

Institute for Human and Machine Cognition 55

Role-Value Maps

OntlInstanceDescriptionImpl statelnstance = new OntInstanceDescriptionImpl(stateld,
state.getMainSuperClassName());

OntlnstanceDescription hostinstance = new OntinstanceDescriptionimpl(host, HOST_TYPE);
statelnstance.addProperty(HOST_PROP, host, hostInstance);
stateManager.registerState(statelnstance);

stateManager.updateStateProperty(stateld, DOWN_PROP, "true");

10.6 History

As we defined in section 8, the system must maintain a history of events so that we can reason about the
current action in the context of previous ones. From the CSIFactory we get the history monitor for the
RadioTransmissionAction and then we calculate the radioTransmAID for the hasTransmissionPower
property. The logEvent method allows tracking the actions in a way consistent with history monitoring
and policy evaluation.

HistoryMonitor historyMonitor = CSlFactory.getHistoryMonitor();
OntPropertyDescriptionlmpl hasTransmissionPower = new
OntPropertyDescriptionimpl (RadioEntityConcepts.hasPower());
hasTransmissionPower .addValue ((new Double(usedPower)).toString());
radioTransmAlD._addProperty(hasTransmissionPower) ;
historyMonitor.logEvent(radioTransmAID);

The KA0S Guard also has access to the history monitor and performs the necessary checks for policy
decisions.

10.7 Classifiers

When classes as video messages are not understood by KAQS, we use classifiers that are class wrappers
which KAoS can load and use. These classifiers provide custom capabilities that allow applications to
make sophisticated policy decisions based on specific parameters of AlDs.

10.8 Policy Callback Mechanism

KAO0S policies provide a callback mechanism that add or remove a policy when a decision changes. For
instance, we get the AID for an agent called GatewayAgent and add a property hasPacket and a value
VIDEO_CHANNEL.

ActionlnstanceDescription videoForwardAction = new
ActionlnstanceDescriptionlmpl (GatewayAgent.aidprefix + (new
VMID()) -toString(), NetworkActionConcepts.ForwardDataAction(),
myGatewayAgent.getGUID());

OntPropertyDescription hasPacketForVideo = new
OntPropertyDescriptionimpl (NetworkActionConcepts.hasPacket());
hasPacketForVideo.addValue(VIDEO CHANNEL + "'Packet™);

Then we get define a PolicyDecisionObserver pObserver, an entity interested in receiving updates
whenever policy decisions change. When the observer is notified that a change occurred then we get the
AllowableValuesForActionProperties from the policy advice which returns a list of the updated AID
objects.

Institute for Human and Machine Cognition 56

Role-Value Maps

PolicyDecisionObserver pObserver = new
GatewayControlAgent.GatewayLinksPolicyDecisionObserver();
List<ActionlnstanceDescription> myVideoOptions =
myPolicyAdvice.getConfiguration(serachPropertyNames,videoForwardAction,
false, pObserver);

11 KAoS Core Ontology

KAOS provides a set of generic ontology concepts needed for basic policy creation. These are available at:
http://ontology.ihmc.us/ontology.html. They describe actors, actions and a variety of other general concepts
such as:

Entity
Attribute
Group

Actor
Situation
Condition
Action
ActionStatus
ActionHistory
Place
Message
Policy

You can also find several application specific extensions.

*** NOTE: The ontology has recently received a major update, as part of the standards efforts underway
with the Federal Digital Policy Management initiative.

12 Extending the KAoS Ontology

In general, the KAoS Core Ontology usually has to be extended with concepts specific to the application
under development. The application ontology should contain definitions for all the concepts for which the
business logic code can provide information. For example, through code instrumentation, the business logic
for the control of radios can usually provide required information about transmission parameters. Thus, all
these concepts should be present explicitly in the ontology, in order that policies can refer to them. Three
common extensions are for Actors, Action and Entities.

12.1 Extending Actor

The Action ontology is typically extended by some ApplicationActor.owl. This extension contains
definitions of application actor classes (or roles) with their properties. The new Action classes should be
subclasses of http://ontology.ihmc.us/Actor.owl#Actor.

12.2 Extending Action

The Action ontology is typically extended by some ApplicationAction.owl. This extension contains
definitions of application action classes with their specific properties. The new Action classes should be
subclasses of http://ontology.ihmc.us/Action.owl#Action. The properties of the Action classes should be
subproperties of either http://ontology.ihmc.us/Action.owl#hasDataContext or
http://ontology.ihmc.us/Action.owl#hasObjectContext in order to provide hints to KPAT about their
importance.

Institute for Human and Machine Cognition 57

Role-Value Maps

12.3 Extending Entity

The Action ontology is typically extended by some ApplicationEntity.owl. This extension contains
definitions of application specific entities with their properties, which will be used to define context of the
actions. The new Entity classes should be a subclasses of http://ontology.ihmc.us/Entity.owl#Entity (or
more specific subclass).

12.4 Java Ontology Mapping Tool

Development of code linking the business logic with KAoS policies and services requires references to the
URLSs of ontology concepts. KAoS provides a simple tool to create Java constants for every concept
defined in a given ontology with values equals to their URLS. In the script/generateOntologyVocabulary,
create an ant build file with target running OntologyMapper for each defined ontology file. For example see
target vocabulary-selected in KAoS_HOME/scripts/kaos-tool. No explicit URLs should be used in the code.
Based on experience, such a practice creates difficult debugging problem (misspelled URLS, ontology
changes). Re-running the script automatically updates the URLSs and concepts, and keeps the code
consistent with the ontology.

*** NOTE: Additional mapping tools (e.g., for Web services) are currently being defined. Should we
mention some of these?

12.5 Example Ontology Extension
Here is an example of extending the ontology:

Build the ontology:

Create an Actor called Printer that extends Actor

Create an Action called Print that extends Action

Add property to Print called Output

Build the java class using the ontology tool

Host the ontology locally

Register an actor as a Printer, see that Print is an available action in KPAT, Have somebody
request the Printer to Print some Output.

e Once the ontology is build you can use a web server to store it and then run KPAT using the
Ontology View tab to load the ontology. For instance, create an ontology named MyOntology.owl
. Then run a web server as TOMCAT and copy the ontology to the webapps\ROOT directory. Run
KPAT and select the Ontology View tab , then press the Load Namespace button and write the url
of the ontology as follow: http://localhost:8080/MyOntology.owl and press the Load Namespace
button to load it. The ontology will be shown in the Namespace List in KPAT. (See fig.X).

** http://localhost/testl.owl **

13 Running without Internet Access

KAOS typically runs with the expectation of Internet access. This access is used to download the current
KAO0S ontologies and any other required ontologies. If Internet access is not available, slow or intermittent,
it may be desirable to use an Internet proxy. KAoS provides an ontology proxy tool for this purpose.

13.1 Starting the Ontology Proxy

To start the ontology proxy tool go to your_kaos_root \kaos\scripts\kaos-tools and type “ant
ontology-proxy”. You should see the Ontology Proxy GUI similar to Figure 40 Ontology Prox.

Institute for Human and Machine Cognition 58

Role-Value Maps

= Ontology Management Tool

[Create | Edit | ontology Provider |

List of Default Ontologies

finput URL |~

Status

Gather Ontologies Save Ontology Snapshot Clear List

Figure 40 Ontology Proxy

13.2 Making an Ontology Snapshot

The ontology files should be configured with their final static namespace. Then, they should be loaded into
the web server configured with a URL corresponding to this namespace. You will need to be connected to
the source of the ontology in order create the ontology snapshot, but once it is created, this is no longer
necessary. An ontology snapshot puts all the required ontologies in a single file. On the “create Snapshot”
tab, select the KAoS ontology from the drop down list. Press “Gather Ontologies” so the proxy will get the
ontologies from the web. Then add any additional ontologies your application needs, gathering each one.
You can type in the URLSs if they are not included in the list. When you have all the ontologies you need
listed, press “Save Ontology Snapshot” and a snapshot of your desired ontology configuration will be saved
to a file with the extension “.ont”. The tab “Edit Snapshot” allows modification or automatically refreshing
of an existing snapshot. It is also very useful when ontologies have to be gathered from disparate domains
(e.g. public Internet and corporate network).

Institute for Human and Machine Cognition 59

Role-Value Maps

& Load Namespace I&J

Please enter a namespace OR choose From the lisk:

htp: fflocalhost SOS0 My Ontalogy owl|

ihttp:,l',l'ontnlu:ugy.ihmc.usll'K.ﬂ.oSOntoIngies.nwl -
ihttp:,l',l'ontnlu:ng'y'.ihmc.usINu:ntiFicatiDnINDtiFicatiDnOntnlogies.u:nwl
ihttp:,l',l'ontnlu:ugv.ihmc.usII'JBI,I'Targeting,l'TargetingOntnIu:ugies.u:uwl

|http: j fontology . hme, usfarmy farmyOnkologies , owl

!

Ihttp: f fontalogy.ibme.usfRobot/MamesfactualRobokClasses. awl
ihttp:,l',l'ontnlu:ng'y'.ihmc.usICu:nrnputingICDmputingOntnlog‘f ol

!

|http: ffontalogy . ihme, usfUsecase fLegacy SystemfLegacySystemOntalogies. awl
!

|Rttp: f fontalogy . ihnc. us) 1ava) Javaontologies. awl b

m

| Load Mamespace | | Cancel

13.3 Ontology Proxy

To run the proxy, go to the “Ontology Provider” tab. Select load snapshot and choose the ontology you
want to load. You should see an indication in the status window when snapshot is loaded. Now just press
“Start” and the ontology proxy is ready. Once created and tested, we provide a script that enables the
automatic loading and starting of the proxy with a particular snapshot. See the runProxyWithOntologySnap
target for an example.

14 Saving and Loading Configurations

14.1 Saving a Policy Snapshot

Created policies and other concepts created in this process should be saved in policy snapshot file. This file
can be created from KPAT tab “Configuration”. The file should be saved in
config/policyConfigurationSnapshots/Name.cfg. In scripts/runKAoSwithPolicyConfiguration create ant
build file with target running KAoS with this policy snapshot preloaded; make sure to set up the first two
properties correctly.

<property name="ontology.file" value="${basedir}/config/ontologySnapshots/ON.ont" />

<property name="directory.snapshot" value="${basedir}/config/policyConfigurationSnapshots/PS.cfg"/>
<target name="runKAoSwithL.3078" description="Start KAoS with policy and ontolgy snapshot">
<fail unless="env.KAOS_HOME" message="Please set the environment variable KAOS_HOME" />
<echo message = "Starting ontology proxy, KAoS DS, Servlet and KPAT"/>

<parallel threadCount="4">

<ant inheritAll="true" antfile="scripts/kaos-tools/build.xml" target="ontology-proxy-autostart"
dir="${env.KAOS_HOME}"/>

<sequential>

<sleep seconds="8" />

<ant inheritAll="true" antfile="scripts/kaos-core/build.xml" target="run-kaos"
dir="${env.KAOS_HOME}"/>

</sequential>

</parallel>

Institute for Human and Machine Cognition 60

Role-Value Maps

</target>

14.2 Configuring an Ant Script

In order for existing applications to be integrated with KAoS at runtime certain parameters have to be
provided. These parameters make KAoS functionality accessible from the modified application source
code. The following elements are needed in the target starting the application:

<classpath>

<!-- Include all jar files in the KAoS ${lib} directory -->

<fileset dir="%{env.KAOS_HOME}/lib">

<include name="**/* jar" />

<exclude name="**/${optionalLib}/* jar" />

<[fileset>

<!-- Include the path to the config files -->

<pathelement path="${env.KAOS_HOME}/${cfgPath}"/>

</classpath>

<jvmarg value="-Dkaos.core.service.default=Guard.cfg" />

<jvmarg value="-
Dkaos.core.policy.service.default=${env.KAOS_HOME}/${config}/guardConfiguration.cfg" />
<jvmarg value="-Djava.util.logging.config.file=${config}/logging.properties" />

If the jar libraries and other configuration parameters are correctly specified, then all available KAoS
functionality can be accessed by retrieving the appropriate implementation of the given subset of
functionality. This is done by calling a specific factory method on static class: kaos.core.csi.CSIFactor.
Such calls will create background connections with the KAoS Directory Service.

15 Policy Templates

To simplify policy construction, KPAT provides two additional policy creation interfaces, in addition to
the generic policy creation interface:

e The Policy Wizard takes a user step-by-step through the policy creation process. Information selected
for presentation is conditioned on whatever has been selected previously, making the experience as
simple and foolproof as possible.

e The Policy Template Editor allows custom policy editors for a given kind of policies to be created by
point-and-click methods. For instance, if an application will require the definition of several policies
governing publish/subscribe actions, a custom policy editor can be quickly created by limiting choices
to just what is needed, thus eliminating the requirement for repetitive selections when a given type of
policy has to be created multiple times.

16 Policy Conflict Resolution

When a policy conflict occurs, the KPAT user is presented with a dialog for resolving the conflict.
In the case of a direct conflict (same priority), the user has some options:

® change the priority of one of the conflicting policies

® make an exception (e.g. this policy doesn't apply for mission X)

® remove one of the conflicting policies

The policy resolution dialog allows the option to “accept” policy conflict for overlapping policies, where
acceptance indicates that you are OK with the overlap / redundancy. For directly conflicting policies,
acceptance indicates that you do not want to resolve the conflict at this time (e.g. save it for runtime
resolution at the guard level). The dialog is shown in Fig.41.

Institute for Human and Machine Cognition 61

Role-Value Maps

In the case of running a distributed directory service, the user may request permission to change policies
forwarded by a directory service of higher authority, and provide a reason for making the change. The
original directory service is notified of the request, and its user decides whether to allow the modification
(via KPAT). The modified policy only affects the directory service which requested the modification. This
case is depicted in Figs. 42 and 43.

Policy Conflict

Conflicting Policy Existing Policy
Name: SateliteLinkGenericException Name: VideoAuthorization
1D: urn:KAoS#policy-fea21355-012f-0000-8000-0000aabbccdd ID: urn:KAoS#policy-fea86fad-012f-0000-8000-0000aabbccdd
Description: Satellite link cannot be used for data if unit is not in Description: Use any available link to send video when in location.

location and not engaged.

Priority: 2 Priority: 2
| Modify | Modify |
Change priority
Reason for conflict: Policies have the same priority

E&\t policy

Remove policy |Accept conflict |

Fig.41. Policy Conflict Resolution Dialog

Domains and Actors * | Actor Roles / Classes x | Policies x

Policies - Policy Information
Showing policies for all actors, all actions Mama: |[NoRalicy Selacted]
MName Priority Id:
) DefaultLinkAuthorization 1] Author:
B Localpolicy 1| Actor:
Priority:
In Force:

Forwarded by:
Time Stamp:
Description: |

Request Change to Forwarded Policy

Please describe the reason for requesting a change to the ferwarded policy

IThrs mission is of low importance, and the direct link is not necessary }

& cancel o« OK ‘
T
(drag and drop to adjust priority
or to create policy sets)
Add Policy Set New Policy ~
Policy Changes
Policy changes need to be committed to the Directory Service Commit: Discard |

Fig.42. Request modification of forwarded policy.

Institute for Human and Machine Cognition 62

Role-Value Maps

|%| KPAT][- KAoS Policy Administration Tool v2.0 = |[= [
File Connection View

| Domains and Actors % | Actor Roles / Classes » | Policies x

Policies Policy Information
Showing policies for all actors. all actions Hame: DefaulttinkAuthorization
[Mame Priority Id: policy-3372b41b-012f-0000-5000-0000aabbcrdd
VideoAuthorization 2 Atkon
. . Actor: Router
BEEE N | e
! PlaneLinkDefaultUsage 1 5 =

InForce: [
i SatelitelinkDefault 1 -
Forwarded by:

Time Stamp: 10/20/2011 09:28 PM
Description: Router can use a Direct link for any data.

Policy Permission Request

| DSl is requesting permission to modify policy DefaultLinkAuthorization.
Reason: This mission is of low importance, and the direct link is not necessary

[2pprove | [Deny]
(drag and drop to adjust priority i [View pobicy representation |
or to areate policy sets)
Add Poiicy Set] {uewpoln-J[Em |[<:apy‘ Remove |[Sav=][pximnmsyss]
" Policy Changes
All policy changes have been commiitted to the Directory Service Commit

Fig. 43. Ask source if the modification is allowed.

17 Advanced Features

17.1 Distributed Directory Service

KAO0S supports the ability to have multiple directory services running concurrently. The directories may
optionally be configured to share policies between each other.

Directory services in a LAN will automatically find each other, using the KAoS P2P discovery mechanism
(assuming they belong to the same discovery-group, as specified in the message transport configuration
file). They must each have a unique name.

Agents also automatically find the directory services within their discovery-group, using the KAoS P2P
discovery mechanism. By default, the first directory service to respond to a discovery request will be used
by the agent as the primary directory service. A preferred directory service may be specified in the agent's
message transport configuration file, by adding the property 'preferredHost' (for a particular hostname) or
‘entityld' (for a particular agent name) to the 'PreferredDS' locator description:

(locators
(PreferredDS
(discoveryEnabled true)
(discoveryGroup kaos)
(entityType DirectoryService)
(preferredHost ’10.0.0.2°)
)

)

Institute for Human and Machine Cognition 63

Role-Value Maps

Policy subscriptions between directories are established by using the KPAT GUI. From the policies tab,
right-clicking on a policy (or policy set) presents the user with an option to “Setup peer subscriptions”.
From this dialog, the user may choose one or more peer directory services with which to share a policy (or
policy set). After a subscription is established, any updates to the policy or policy set will be synchronized
with the remote directory. The subscriptions are saved in the configuration snapshot of the directory service
used to establish the subscriptions.

To run the distributed directory service, call the ant target 'peerDistributed' before calling the normal target
'run-ds' (from the kaos—core ant script) . You should also pass in parameters for “agent.name” and “ds.cfg”,
which specifies the name of the directory service, and the configuration file to use, respectively (the
configuration file must be unique for each directory, because the agent name is also contained in the
message transport section of the configuration). For example:

ant —Dagent.name=DirectoryService2 —Dds.cfg=DS.cfg peerDistributed run—ds

18 Troubleshooting

My agent seems to start, the domain shows up, but the agent does not show up in KPAT:

The most likely problem is that your agent starts registers and then terminates immediately deregistering
from KPAT. Make sure you have a “Thread.wait()” in your main method.

My policies don’t seem to work at all. I made a simple authorization policy preventing an action
without any properties, but it does not stop the action:

The most likely cause is forgetting to add this prefix when using names

| get an error about “java.net.BindException: Address already in use: JVM_Bind”

The most likely cause is that you already have a directory service running. Make sure you kill all previous
processes before starting. If it still happens, check your running processes using Task Manager or an
equivalent application. Kill any java.exe processes to ensure nothing is lingering.

Institute for Human and Machine Cognition 64

Appendix
A References

1. SAFE User Documentation, Document Revision 3.0

B Definitions, Abbreviations, and Acronyms

CSI — Cougaar Software Inc. Previously NAI Labs, developers of security extensions to Ultra*Log

DM - The KAoS Domain Manager. It is responsible for registering agents consistent with policies on
domain membership, for ensuring policy consistency at all levels of a domain hierarchy, for notifying
Guards in the event of a policy change, and for storing policies in the repository. A domain is a collection
of Cougaar agents, potentially spanning multiple hosts and Cougaar organizational structures, registered to
a common domain manager as a common point of administration.

Guards. Guards interpret policies that have been approved by the DM and enforce them with appropriate
mechanisms, including Cougaar Binders, Java access control, Nomads resource control, and obligation
policy monitors.

IHMC - Institute for Human & Machine Cognition. A research organization associated with the University
of West Florida.

IP — Internet Protocol. A widely used protocol allowing computers to share data.
JAAS - Java Authentication and Authorization Services
JDK - The Java Development Kit.

JVM - The Java Virtual Machine. A bytecode interpreter for the Java Programming Language. See also
JDK.

KAO0S - Knowledgeable Agent-oriented System. An agent framework developed by The Boeing Company
and IHMC that is now in the public domain.

KPAT - KAo0S Policy Administration Tool. The graphical user interface to managing policies in the KAoS
framework.

MS — Microsoft. The large software company responsible for producing the Windows series of computer
operating systems and numerous anit-trust activities.

OWL - Web Ontology Language (http://www.w3.0rg/TR/owl-features)

SAFE - Survivable Agent Framework Extensions. The name of the project whose goal is to extend the
Cougaar agent framework with additional features to support policy-based domain management of Cougaar
components and host resources. TCP — Transmission Control Protocol. Typically used in conjuction with

IP.

VM - Virtual Machine. Shorthand in this context for the Java Virtual Machine (JVM).

XML - A mnemonic for eXtensible Markup Language.

Institute for Human and Machine Cognition 66

