
  KAoS Policy Services Architecture 

Institute for Human and Machine Cognition                                                                                   1 

 

 

 

KAoS Policy Services Framework: 
User Guide 
Date: 21 January 2013 

Contents 

1  KAoS Overview ....................................................................................................................................... 4 

1.1  KAoS Objectives ............................................................................................................................. 4 

1.2  What is Policy? ................................................................................................................................ 4 

1.3  Policy Management vs. Planning .................................................................................................... 5 

1.4  The Importance of Semantics .......................................................................................................... 5 

1.5  The Advantages of Using Policies................................................................................................... 6 

2  KAoS Policy Services Architecture ......................................................................................................... 7 

2.1  General Operation ........................................................................................................................... 8 

2.2  Major components ........................................................................................................................... 8 

2.3  Policy Distribution ........................................................................................................................ 10 

3  Getting Started........................................................................................................................................ 11 

3.1  Installation ..................................................................................................................................... 11 

3.2  KAoS Configuration Files ............................................................................................................. 12 

3.3  Running KAoS .............................................................................................................................. 15 

3.4  Creating Agents ............................................................................................................................. 17 

3.5  Creating Domains .......................................................................................................................... 18 

3.6  Creating Agent Descriptions ......................................................................................................... 19 

3.7  Registering Agents ........................................................................................................................ 21 

3.8  Finding Agents .............................................................................................................................. 21 

3.9  Sending Messages ......................................................................................................................... 22 

3.10  Receiving Messages ...................................................................................................................... 22 

3.11  Creating a Simple Action .............................................................................................................. 22 

3.12  Adding a Simple Enforcer for Policy Checking ............................................................................ 23 

3.13  Creating a Simple Policy without Using KPAT ............................................................................ 23 

3.14  Creating a Simple Policy Using KPAT ......................................................................................... 25 

4  Policy Reasoning Examples ................................................................................................................... 28 



  KAoS Policy Services Architecture 

Institute for Human and Machine Cognition                                                                                   2 

 

4.1  Reasoning over Action Properties ................................................................................................. 29 

4.2  Reasoning over Domains ............................................................................................................... 29 

4.3  Reasoning over Ontological Types................................................................................................ 31 

4.4  Additional Thoughts on Reasoning ............................................................................................... 32 

5  Obligation Policies ................................................................................................................................. 33 

5.1  Extending the KAoS Ontology ...................................................................................................... 34 

5.2  Creating an Obligation Policy ....................................................................................................... 36 

5.3  Testing Obligations ....................................................................................................................... 37 

5.4  Implementing Enforcement for Obligations .................................................................................. 38 

6  Policy Prioritization ................................................................................................................................ 40 

6.1  Priority integer ............................................................................................................................... 40 

7  Role-Value Maps .................................................................................................................................... 42 

7.1  Creating a Policy Using Role-Value-Maps ................................................................................... 42 

7.2  Role-Value-Map Implementation Changes ................................................................................... 43 

7.3  Testing the Role-Value-Map Example .......................................................................................... 44 

8  Reasoning about History and Time ........................................................................................................ 45 

8.1  Multiple History Conditions .......................................................................................................... 48 

9  The API - Common Services Interface (CSI) ......................................................................................... 51 

9.1  Transport ....................................................................................................................................... 51 

9.2  Registration ................................................................................................................................... 51 

9.3  Request .......................................................................................................................................... 51 

9.4  Query ............................................................................................................................................. 52 

9.5  Publish/Subscribe .......................................................................................................................... 52 

9.6  Policy ............................................................................................................................................. 53 

10  Enforcement ........................................................................................................................................... 53 

10.1  Action Instance Description .......................................................................................................... 53 

10.2  Checking Authorization ................................................................................................................ 53 

10.3  Checking Obligations .................................................................................................................... 54 

10.4   Policy Base Configuration ............................................................................................................ 54 

10.5  State Monitor ................................................................................................................................. 55 

10.6  History ........................................................................................................................................... 56 

10.7  Classifiers ...................................................................................................................................... 56 

10.8  Policy Callback Mechanism .......................................................................................................... 56 

11  KAoS Core Ontology ............................................................................................................................. 57 

12  Extending the KAoS Ontology ............................................................................................................... 57 

12.1  Extending Actor ............................................................................................................................ 57 

12.2  Extending Action ........................................................................................................................... 57 

12.3  Extending Entity ............................................................................................................................ 58 

12.4  Java Ontology Mapping Tool ........................................................................................................ 58 

12.5  Example Ontology Extension ........................................................................................................ 58 

13  Running without Internet Access ........................................................................................................... 58 

13.1  Starting the Ontology Proxy .......................................................................................................... 58 

13.2  Making an Ontology Snapshot ...................................................................................................... 59 

13.3  Ontology Proxy ............................................................................................................................. 60 

14  Saving and Loading Configurations ....................................................................................................... 60 



  KAoS Policy Services Architecture 

Institute for Human and Machine Cognition                                                                                   3 

 

14.1  Saving a Policy Snapshot .............................................................................................................. 60 

14.2  Configuring an Ant Script ............................................................................................................. 61 

15  Policy Templates .................................................................................................................................... 61 

16  Policy Conflict Resolution ..................................................................................................................... 61 

17  Advanced Features ................................................................................................................................. 63 

17.1  Distributed Directory Service ........................................................................................................ 63 

18  Troubleshooting ..................................................................................................................................... 64 

Appendix ....................................................................................................................................................... 65 

A References .......................................................................................................................................... 65 

B Definitions, Abbreviations, and Acronyms ........................................................................................ 65 

 

 

 

 

 

 

 

 

 

 



  KAoS Policy Services Architecture 

Institute for Human and Machine Cognition                                                                                   4 

 

1 KAoS Overview 
In the mid-1990’s, we began to develop KAoS. KAoS was originally designed as an agent platform and 
still provides many features essential to distributed computing, but has now become a set of platform-
independent services that enable people to define policies for the security, predictability, and controllability 
of both agents and traditional distributed systems. KAoS Domain Services provide the capability for groups 
of software components, people, resources, and other entities to be semantically described and structured 
into organizations of domains and subdomains to facilitate collaboration and external policy administration. 
KAoS Policy Services allow for the specification, management, conflict resolution, and enforcement of 
policies. 

1.1 KAoS Objectives 
 Provide policy, domain and other services for a wide variety of agent, robotic, and distributed 

computing platforms 
 Be compatible with semantic technology standards (e.g., OWL) 
 Provide persistent policy and actor registration storage and sophisticated query and analysis 

mechanisms 
 Support easy extension and customization of service framework elements 
 Provide policy dissemination and decision making infrastructure that is distributed, highly 

efficient and transparently pluggable 
 

1.2 What is Policy? 
In agent and distributed computing contexts, policy can be defined as an enforceable, well-specified 
constraint on the performance of a machine-executable action by a subject in a given situation. 

 enforceable: In principle, an action controlled by policy must be of the sort that it can be 
prevented, monitored, or enabled by the system infrastructure; 

 well-specified: Policies are well-defined declarative descriptions; 

 constraint on the performance: The objective of policy is to ensure, with or without the 
knowledge or cooperation of the entity being governed, that the policy administrator's intent is 
carried out with respect to whether or not the specified policy governed action takes place; 

 machine-executable action: In addition to purely machine-executable actions, we include 
situations where a person is responsible for completing an action and then somehow signaling that 
fact to the machine; 

 subject: The subject is either a human being or a hardware or software component, or a group of 
such entities; 

 situation: Policy applicability may be determined by a variety of preconditions and contextual 
factors.  



  KAoS Policy Services Architecture 

Institute for Human and Machine Cognition                                                                                   5 

 

Policies constrain or amend user or system activity or state. They include a description (class) of the 
controlled situation. This constitutes a test (template) for the applicability of the policy. They also contain a 
definition of action Subject; an extension of traditional policy Role. KAoS supports two main types of 
policies. The set of permitted actions is determined by authorization policies that specify which actions an 
actor or set of actors is allowed (positive authorizations policies) or not allowed (negative authorizations 
policies) to perform in a given context. Obligation policies specify actions that an actor or set of actors is 
required to perform (positive obligations) or for which such a requirement is waived (negative obligations). 
All other kinds of policies (e.g., delegation, teamwork coordination) are constructed from these two 
primitive types, combined with other aspects of KAoS policy semantics (e.g., domains, history, or state). 

1.3 Policy Management vs. Planning 
Policy management should not be confused with planning or workflow management, which are related but 
separate functions. Planning mechanisms are generally deliberative (i.e., they reason deeply and actively 
about activities in support of complex goals) whereas policy mechanisms tend to be reactive (i.e., 
concerned with actions triggered by some environmental event). Plans are a unified roadmap for 
accomplishing some coherent set of objectives. However, bodies of policy collected to govern some sphere 
of activity are made up of diverse constraints imposed by multiple potentially-disjoint stakeholders and 
enforced by mechanisms that are more or less independent from the ones directly involved in planning. 
Plans tend to be strategic and comprehensive, while policies, in our sense, are by nature tactical and 
piecemeal. In short, we might say that while policies constitute the “rules of the road” providing the stop 
signs, speed limits, and lane markers that serve to coordinate traffic and minimize mishaps, they are not 
sufficient to address the problem of route planning. 

1.4 The Importance of Semantics 
The use of XML as a standard for policy expression has both advantages and disadvantages. The major 
advantage of using XML is its straightforward extensibility (a feature shared with Semantic Web languages 
such as RDF and OWL, which are built using XML as a foundation). The problem with using XML alone 
is that its semantics are mostly implicit (meaning is conveyed based on a shared understanding derived 
from human consensus), which has the potential for ambiguity, promotes fragmentation into incompatible 
representations, and requires extra effort that could be saved by a richer representation. 

OWL was developed under the DARPA Agent Markup Language (DAML) program and adopted as a 
standard by the W3C. OWL can be easily mapped to lower level XML-based representations if required – 
mapping from more expressive to less expressive representations is relatively straightforward. 

A few policy approaches based on Semantic Web representations (e.g., Rei, PolicyTab) have previously 
been attempted, but we have found that none have the generality or wide range of capabilities of needed for 
policy management frameworks like KAoS. 

As a means of providing a formal semantics for policies and increasing their expressivity, many specialized 
logics have been used and extended (e.g., modal logics, event calculus). In contrast, by adopting OWL, a 
policy representation based on a widely-used formalism with well-understood and highly desirable 
properties (i.e., description logic), we automatically harness many years of previous development, and the 
momentum of the W3C standards process that has led to a proliferation of widely-available tools. 

KAoS polices are expressed in OWL2 (Web Ontology Language: http://www.w3.org/ 2004/OWL), the 
current version of the W3C standard, optionally augmented with other constructs (e.g., role-value maps) for 
greater expressivity. This allows us to provide descriptions of actors, actions and situations at different 
levels of abstraction. It enables the possibility to dynamically calculate relations among policy, platform 
entities, and other policies based on concepts ontology relations. We can create a dynamic extension of the 
service framework by specifying domain specific extensions to the ontology and linking them with the 
generic KAoS ontology. OWL vocabularies allows for declarative definition of policy applicability. 



  KAoS Policy Services Architecture 

Institute for Human and Machine Cognition                                                                                   6 

 

1.5 The Advantages of Using Policies 
Some of the characteristics of KAoS policies that make them useful are their powerful expressiveness, 
external nature, transparency, and flexibility. 

1.5.1 Expressive Power 
The choice of policy language directly impacts the expressiveness available in policies.  We use OWL to 
provide declarative specification of policies at a broad range of levels.  By combining this with reasoning 
capabilities, we are able to reason about relationships and produce complex context sensitive policies.   
They can address the entire system, groups within the system or individual instances within the system. 
They can refer to actions at any level of abstraction and translate between levels. Most importantly, policies 
allow for a context to be explicitly defined, which helps to prevent over (or under) restricting the autonomy 
of the system.  Policies provide a mechanism to explicitly define the “work-around” solution based on 
context. Context can be any information, including things that the robot was never programmed to 
consider, such as time of day or outside temperature. 

1.5.2 External nature of policy 
Policies can be used to separate the behavioral constraints and preferences of operators from the underlying 
functionality. This is an idea that has been successful in many other areas such as database and web design.  
Because these different aspects of knowledge are decoupled, KAoS policies can be easily reused across 
different robots and in different situations. By putting the burden for policy analysis and enforcement on 
the infrastructure, rather than having to build such knowledge into each component themselves, we 
minimize the implementation burden on developers and ensure that all components operate within the 
bounds of policy constraints. 

1.5.3 Transparency 
The use of KAoS policies can also help to make the component behavior more transparent. Again, 
constraints are made explicit, instead of being scattered and buried in the code. The benefits of 
transparency are not restricted to humans. Deliberative systems are also free to take advantage of the 
information available through policy disclosure mechanisms. Such information can be used to reason about 
the implication of policies and generate a more accurate model of the system. The transparency of policies 
can be used for planning purposes, resulting in more efficient plans by considering constraints.  This can 
both reduce the search space and prevent futile actions from being attempted.  Finally, policies are 
viewable and verifiable.  As systems grow, multiple constraints in complex systems can lead to unexpected 
(and possibly undetected) conflict. Often these oversights surface at very inopportune moments. Polices can 
be screened for conflicts prior to activation and in some cases can be automatically harmonized. More 
importantly, the policy creators can be informed of the problem, so they may take the best course of action. 

1.5.4 Flexibility 
One of the main advantages of using KAoS policies is that they are a means to dynamically regulate the 
behavior of a system without changing code. New constraints can be imposed at runtime and can be 
dynamically changed and updated as the environment or domain changes. Policy flexibility can also be 
used to suit the system to the human, instead of solely training the human to the system. Through policy, 
people can precisely express bounds on autonomous behavior in a way that is consistent with their 
appraisal of an agent’s competence in a given context. This provides a broad range of controllability, as 
well as allowing individuals to tailor the system to their needs. As trust increases, policy can be altered to 
allow greater autonomy. 

 

 



  KAoS Policy Services Architecture 

Institute for Human and Machine Cognition                                                                                   7 

 

2 KAoS Policy Services Architecture 
KAoS Services are provided by a few core components.  Figure 1 presents basic elements of the KAoS 
framework. Framework1 functionality can be divided into two categories: generic and application/platform-
specific. The generic functionality includes reusable capabilities for: 

 Creating and managing the set of core ontologies; 
 Storing, deconflicting and querying; 
 Distributing and enforcing policies; 
 Disclosing policies. 
 

For specific applications and platforms, the KAoS framework can be extended and specialized by: 

 Defining new ontologies describing application-specific and platform-specific entities and relevant 
action types; 

 Creating extension plug-ins specific for a given application environment such as: 
 Policy Template and Custom Action Property editors; 
 Enforcers controlling, monitoring, or facilitating subclasses of actions; 
 Classifiers to determine if a given instance of an entity is in the scope of a given class-defining range. 

 

 

 
 

Figure 1 Selected elements of the KAoS policy and domain services framework 

 
                                                           

  



  KAoS Policy Services Architecture 

Institute for Human and Machine Cognition                                                                                   8 

 

 

2.1 General Operation 
A brief informal description of the general operation of the KAoS Framework starts with launching the 
Directory Service. The Directory Service is the hub for all activity. The Directory service will use the 
Internet to access various ontologies.  KAoS provides a proxy service for applications that do not have 
Internet access.  Next the managed components are launched.  These components can be agents, robots, 
web services, or just plain applications.  Basically they are bits of software that you would like to enforce 
policies on.  For historical reasons we will use the term agent to refer to these managed components.  Once 
launched, these agents register with the Directory Service, potentially providing additional information 
about their capabilities or other properties.  When agents register, a guard is create on the local platform to 
provide a local policy decision point, enabling policy checking even with intermittent network connectivity.  
Enforcement is handled by a domain specific application.  The Enforcer must be capable of intercepting 
actions, querying the guard for policy decisions and then enforcing those decisions on the native 
application.  The enforcer does not need to reason about policies as this is the role of the guard, it only 
needs to enforce the decision.  Policies are generally created graphically through KPAT, although they can 
also be created programmatically through the Common Services Interface (CSI).  Once created, KPAT 
sends the policy to the Directory Service where it is stored and distributed to the relevant guards.  Guards 
only receive policies that are relevant to the agents they are guarding.  When an agent attempts to perform 
an action, the local enforcer intercepts the action, passes it to the guard, the guard informs the enforcer of 
the policy decision (authorized or not and any obligations) and the enforcer imposes the result on the agents 
action (e.g. preventing execution if not authorized). 

2.2 Major components 

2.2.1 Directory Service 
The Directory Service is the main component of the system. It is the central location for storage and 
distribution of information.  It keeps information about the domain structure of the environment and 
contains ontological definitions of the platform and active applications. It allows actors to register their 
name and identities, membership in domains and ontologically specified types and capabilities. It keeps the 
state of policies and the ontological description of the current situation by collecting the history of events 
and monitoring states. It stores policy information, handles policy deconfliction and handles policy 
distribution.  The Directory can be run as a single component or can be distributed (see section ** below).  
The Directory Service needs access to the Internet (or the KAoS ontology proxy) in order to obtain the 
required ontologies. 

2.2.2 Reasoning Services 
Reasoning services are used in KAoS to perform inferences about ontological relations and policies. We 
currently use Stanford JTP (Java Theory Prover). It provides the following features: 

 First-order logic reasoning: 
o With support for description logic reasoning over OWL defined Knowledge Bases 

 Support for non-monotonic reasoning: 
o Untell operation 

 Framework architecture allowing for adding new specialized sub-reasoners 
 



  KAoS Policy Services Architecture 

Institute for Human and Machine Cognition                                                                                   9 

 

2.2.3 Guard 
The Guard is the policy-decision-point, typically running local to the application being governed (e.g., per 
JVM), but can be deployed remotely as well. Guards can be connected to the DS by a network to enable 
automatic policy updates, or they can be run in standalone mode, with policies loaded manually. There are 
usually many Guards in a system, each controlling part of environment activities. It is also integrated with 
the Directory Service to allow controlling DS actions by policies. The Guard stores precompiled (with 
cached ontology relations) policies applicable to its area of interest. It does not use external reasoning 
services directly. The Guard was designed to be easily integrated with legacy system via a Java API. It 
provides a framework allowing to plug enforcement and classification modules specific for the current 
application into the reasoning. The Guard is generic. It is not application specific, although its extensions 
can be. 

2.2.4 Enforcer 
Enforcement is always platform specific. There are several ways to provide enforcement. We describe a 
few in chapter 10. The key point to understand is that while the Guard provides a generic way to determine 
the policy decision, the enforcer is the application specific enforcement mechanism that makes that 
decision effective. 

2.2.5 KAoS Policy Administration Tool (KPAT) 
KPAT (KAoS Policy Administration Tool, pronounced KAY-pat) is a graphical user interface that allows 
people to specify, analyze, modify, and test authorization and obligation policies during development or at 
runtime. It can also be used to manage sets of ontologies, to configure and inspect Guards, and to perform a 
variety of other administrative tasks. While KPAT is a sophisticated user interface tool in its own right, 
most of its functionality is implemented within the DS and the Guards themselves. KPAT provides a means 
to access that functionality and to view results and state interactively. 

KPAT hides the complexity of the OWL representation from users. The reasoning and representation 
capabilities of OWL are used to full advantage to make the process as simple as possible. Whenever users 
are required to provide an input, they are presented with a complete set of context-driven values from 
which to select. 

KPAT’s generic Policy Editor (See Figure 2) presents an administrator with a starting point for policy 
construction – essentially, a very generic policy statement shown as hypertext. Clicking on a specific link 
that represents a variable provides the user with choices allowing him to make a more specific policy 
statement. During use, KPAT accesses the loaded ontologies and provides the user with the list of choices, 
narrowed to the current context of the policy construction. New classes and instances can also be created 
from KPAT.  To further simplify policy construction, KPAT provides two additional policy creation 
interfaces: A Policy Wizard to guide users step-by-step, and a Policy Template Editor that allows custom 
policy editors for a given kind of policy to be created by point-and-click methods. 

KAoS includes a series of views, within the KPAT environment, that permit the policy generator the ability 
to review the policies being generated. They are: Domain View (hierarchy of registered domains), Actor 
Class View (list of actor classes defined in the loaded ontologies, Policies (shows the entire list of policies 
and policy hierarchy sets in the system), Policy Templates (list of available policy templates from which 
the user can create new policies, Policy Disclosure (list of policy disclosure queries), Namespaces (list of 
loaded ontologies and information about selected ontology, Configuration (current configuration of the 
Directory Service), Ontology Query (allows the user to query the ontology), Guard Manager (hierarchy of 
registered Guards and information about the selected Guard) 

2.2.6 Ontology Proxy 
The ontology proxy is an optional tool that allows KAoS to run without access to the Internet.  See chapter 
13.3 for more details. 



  KAoS Policy Services Architecture 

Institute for Human and Machine Cognition                                                                                   10 

 

2.3 Policy Distribution 
Every actor in the system is associated with a Guard.  Each Guard receives policy updates from the 
Directory Service based on what it guards; actors ids, roles/classes of actors, and actions classes. Before a 
policy leaves Directory Service it is transformed from OWL to semi-table format. Information about 
instances in the classes, relevant class and properties relations are cached. The policy is stored in the Guard 
Policy Information database, according to its priority in order to facilitate efficient policy queries. 



Institute for Human and Machine Cognition                                                                                   66 

3 Getting Started 
To begin using KAoS, you must first download and install it. Next you create some actors, enable 

them with some actions, and provide an enforcement mechanism.  Then you can create and apply policies 
to your actors. We will describe each step of this process in the following sections. 

The sections of this chapter are a basic introduction to KAoS.  There is a corresponding code example 
(kaos/core/tutorial) that is a physical implementation of this chapter.  The example is composed of four 
classes: 

1) SimpleAgent – the main agent example that extends KAoSActorImpl, which a KAoS helper class 
to take care of some of the configuration and registration process. 

2) SimpleAgentHuman – an extension for demonstrating ontological types 
3) SimpleAgentRobot – an extension for demonstrating ontological types 
4) TutorialDemo – a graphical interface to allow for easy creation of agents and domains.  It allows 

for testing out some of the features such as querying the Directory Service, sending messages, 
and performing a simple action that we can check against policies. This application is simply the 
scenario driver for the tutorial. 

 
This example is designed to help get you going quickly using helper classes provided by KAoS, but as with 
everything, there is always more than one way to things.  As such, we will occasionally mention some 
alternative methods, such as using CSI directly.  KAoS tries to impose as little as possible on the 
applications that make use of its services. 

It is important to remember that KAoS is not an agent environment. It does provide a communication 
mechanism and a simple method for registering with KAoS, but you must create the actors, their abilities, 
and provide planning mechanisms as desired. Similarly, KPAT is not and centralized controller for an agent 
system. It is a policy administration tool that allows you to view registered agents and create policies. 
Lastly, enforcement is always platform specific.  It will be up to you to determine the best enforcement 
strategy for your system. We provide several example techniques that show how enforcement can be 
achieved. If you keep in mind that the main goal of KAoS is provide policy and domain services to variety 
of systems you can avoid a lot of confusion. 

3.1 Installation 
The KAoS distribution is currently offered to users after training. They have to be able to come to our 
facility in Pensacola and get the proper software training. We will give them the version of the distribution 
you desire and how to download it to your computer. For installation, simply you  unzip the distribution file 
to the desired location (your_kaos_root) on your computer. KAoS requires: 

 Java 1.5 or higher (http://www.java.com) 
 Ant 1.7 or higher (http://ant.apache.org) 
 

Once the distribution is unzipped you will see several directories under your_kaos_root. These directories 
are: config, lib, scripts and Servlets. The config directory provides several subdirectories that can be 
configured according to your system needs (Section 3.2). The lib directory contains the required jar files to 
run KAoS. The Servlets directory contained jar files and a default configuration to run KAoS as a servlet 
and the scripts directory which you can configure to run your own agent applications (Section 3.2). No 
specific configuration or additional packages are required for basic execution which uses the KAoS native 
raw TCP transport protocol and ant scripts. It also provides ant scripts for running the various tools and 
components. The available targets and descriptions of each of the build.xml files can be obtained by 
executing "ant -p" (ant version 1.6 and up) in a given subdirectory. 

KAoS in general needs access to the Internet to load required ontology files. It is however possible to use 
KAoS without the Internet access. KAoS includes a tool called "ontology proxy", which can simulate web 
servers providing ontology files.  This is covered in chapter 13. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   12 

 

3.2 KAoS Configuration Files 
The directory kaos.config has subdirectories tcp, state and metrics and several configuration and properties 
files that can be configurable: logging.properties, kpat.cfg, kpat_allTabs.cfg, log4j.properties, and 
guardConfiguration.cfg. 

The tcp directory has a subdirectory: default. The default directory has two files DS.cfg and Guard.cfg. The 
Guard.cfg contains information about the guard. You can specify the Locators which use UDP to 
automatically discover the Directory Service. If there are multiple directory services you may specify a 
preferred one in the locator preferred host parameter setting it as a localhost, (default) or as a hostname 
(symbolic name) or as the entity IP (numerical address in quotes). For TCP, you can set the network 
interface when the system has multiple network cards. This applies enabling preferred-network-interface 
eth0 to the TCP communication as well as UDP. Also, you can set the source IP address to use for UDP 
advertisement/discovery (numerical address in quotes) for systems with multiple IP addresses bound to a 
single interface. By default it is set to localhost: discovery-source-address  localhost. You can configure the 
time period for sending keep-alive advertisement via UDP in milliseconds (1000 ms in the example) and 
enable or disable the compression of the message over the wire by setting the parameter transport-
compress-msg to either true or false or by comment it out. For the guard locator, you can enable or disable 
(commenting out the lines) the UDP discovery for the local guard. If it is enabled you can specify the 
discovery advertise, discovery group, and entity type. An example of the Guard.cfg file is as follow: 
 
(java-agent-services 
  (key-prefix javax.agent.service) 
  (agent-directory-service 
    (service-factory kaos.core.service.directory.tcp.TCPAgentDirectoryServiceFactory) 
    # specifies the locator to use for the Directory Service 
    (directory-service-locator DiscoveryDS) 
  ) 
  (agent-naming-service 
    (service-factory kaos.core.service.naming.tcp.TCPAgentNamingServiceFactory) 
  ) 
  (message-transport-system 
 # set to false, or comment out to disable message compression 
    (transport-compress-msg true) 
    (service-factory kaos.core.service.transport.KAoSTransportSystemFactory) 
    (message-transport-service 
 
      (TCP 
        (transport-factory-class kaos.core.service.transport.BufferedMessageTransportFactory) 
        (transport-service-class kaos.core.service.transport.tcp.TCPMessageTransportService) 
        (preferred-network-interface eth0) 
        (discovery-source-address localhost) 
 
       # set the period (in ms) for sending keep-alive advertisement via UDP 
       (discovery-advertisement-period 1000) 
 
        (locators 
   # DirectoryService locator: automatically discovered by UDP 
          (DiscoveryDS 
            (discoveryEnabled true) 
         # unique discoveryGroup allows multiple KAoS systems to run on the same LAN 
            (discoveryGroup kaos) 
            (entityType DirectoryService) 
            (preferredHost localhost) 
            (entityId KAoSDirectoryService) 
          ) 
 
        # alternate DirectoryService locator: manually configured hostname/IP address. 
          (HostBasedDS 
            (host localhost) 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   13 

 

            (port 2002) 
            (name KAoSDirectoryService) 
          ) 
 
          # Guard locator: enables UDP discovery. Comment out lines below to disable discovery 
          (LocalGuard 
            (discoveryAdvertise true) 
            (discoveryGroup kaos) 
            (entityType Guard)    ))))))                                                                                                                                                                                 
 
The DS.cfg file describes the Directory Service configuration. You can enable or disable the compression of 
the message over the wire by setting the parameter transport-compress-msg to either true or false or by 
comment it out. For TCP, you can enable preferred-network-interface eth0 when the system has multiple 
network cards. This applies to the TCP communication as well as UDP. You can set the source IP address 
to use for UDP advertisement/discovery (put numerical address in quotes) for systems with multiple IP 
addresses bound to a single interface. You can configure the time period for sending keep-alive 
advertisement via UDP in milliseconds (1000 ms in the example). For the locators you can comment out 
discoveryGroup to disable UDP discovery/advertisement. When it is enable, a guard can find a directory 
service by broadcasting its information with the discovery group of interest and the directory service that 
belongs to that group will respond accordingly. Here is an example of the DS.cfg file: 
 
(java-agent-services 
  (key-prefix javax.agent.service) 
  (agent-directory-service 
    (service-factory kaos.core.service.directory.tcp.TCPAgentDirectoryServiceFactory) 
  ) 
  (agent-naming-service 
    (service-factory kaos.core.service.naming.tcp.TCPAgentNamingServiceFactory) 
  ) 
  (message-transport-system 
 # set to false, or comment out 
    (transport-compress-msg true) 
    (service-factory kaos.core.service.transport.KAoSTransportSystemFactory) 
    (message-transport-service 
 
      (TCP 
        (transport-factory-class kaos.core.service.transport.BufferedMessageTransportFactory) 
        (transport-service-class kaos.core.service.transport.tcp.TCPMessageTransportService) 
        # set the network interface, e.g. for systems with multiple network cards 
        (preferred-network-interface eth0) 
        # set the source IP address to use for UDP advertisement/discovery 
        (discovery-source-address localhost) 
 
        # set the period (in ms) for sending keep-alive advertisement via UDP 
        (discovery-advertisement-period 1000) 
 
        (locators 
          (KAoSDirectoryService 
            (host localhost) 
            (port 2002) 
            (name KAoSDirectoryService) 
            # comment out the line below to disable UDP discovery/advertisement 
            (discoveryGroup kaos)      )))) 
 
The state directory contains the state.properties file that allows you to instantiate the list of state sensors 
you are monitoring, their classes and parameters. Upon startup, the StateManager reads this configuration 
file, instantiates each of the StateSensor, and registers the StateSensor with itself as a listener for policy 
state conditions, based on the interested types of states. (Details in Section 10.5).For example: 

#State sensors to instantiate 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   14 

 

#state   class       params 
Weather   kaos.core.csi.extension.state.WeatherMonitor  PNS MOB 
FlightConditions                     kaos.core.csi.extension.state.FlightConditionMonitor           PNS MOB 
 
The metrics directory has the MetricManager.properties file to allow you to see the KAoS metrics which 
by default is disabled or commented out. You can enable it to see the metrics by removing the # on the 
parameter: #enabled = true. 

In the looging.properties and log4j.properties files you can specify the level of debug information you want 
while running your application, for example:                                                                            
level=WARNING                                                                                                                             
level=SEVERE                                                                                                                                          
level=INFO                                                                                                                                        
level=FINE 

The kpat_allTabs.cfg contains all the tabs available in KPAT. In the kpat.cfg you can configure which tabs 
you want to be display by default when you are running KPAT. 

The guardConfiguration.cfg allows specifying information about your agent as domain name, transport and 
policy interest. For instance: 

(java-agent-services 
    (key-prefix javax.agent.service) 
 (guard-service 
     (service-factory kaos.policy.guard.GuardRetriever) 
  (Transport 
   (transportName tcp) 
  ) 
  (DomainNames 
   (TSOA 1) 
  ) 
  (PolicyInterests 
   (ActorClasses 
    (http://ontology.ihmc.us/Actor.owl#Actor 1) 
   ) 
   (ActionClasses 
    (http://ontology.ihmc.us/Action.owl#Action 1) 
   ) 
  ) 
    ) 
 ) 
 
The directory kaos.scripts contains two subdirectories: kaos-core and kaos-tools with build.xml files for 
running the KAoS application. You can change parameters in the configuration files according to your 
system specifications. For instance in the kaos.scripts.kaos-core.build.xml has the following targets for 
running KAoS and KPAT: run-kaos that runs Directory Service and KPAT. You can also run them 
separately using the targets: run-ds, and run-kpat. The kaos-tools directory has a build.xml file that allows 
you to run the KAoS Ontology Proxy described in section 13.3. You can also build a script that starts all 
KAoS applications after you have created a snapshot of your agents (Section 13.2) as follows: 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<project name="Start KAoS with Delegation Management policy and ontolgy snapshot" 
 default="runKAoSforDM" basedir=".."> 
 <import file="${basedir}/config/commonConfig.xml"/>  
 <property name="ontology.file" value="${basedir}/config/ontologySnapshots/DM.ont" /> 
 <property name="directory.snapshot" value= 
                                                         "${basedir}/config/policyConfigurationSnapshots/DMpolicy.cfg"/> 
 <property name="bootPath" value="${basedir}/config/tcp/default" /> 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   15 

 

 <target name="runKAoSforDM" 
  description="Start KAoS with Delegation Management demo policy and ontolgy snapshot"> 
  <fail unless="KAOS_HOME" message="Please set the variable KAOS_HOME" /> 
  <echo message = "Starting ontology proxy, KAoS DS, Servlet and KPAT"/> 
  <parallel threadCount="4"> 
                                         <ant inheritAll="true" antfile="scripts/kaos-tools/build.xml" 
    target="ontology-proxy-autostart" dir="${KAOS_HOME}"/> 
   <sequential> 
    <sleep seconds="8" /> 
    <ant inheritAll="true" antfile="scripts/kaos-core/build.xml" 
     target="run-kaos" dir="${KAOS_HOME}"/> 
   </sequential> 
  </parallel> 
 </target> 
</project> 
 

3.3 Running KAoS 
Using KAoS ant scripts provided on section 3.2 we can run various tools and components.  They can all be 
started individually, but we provide a default ant target the usually starts everything you need.  To run basic 
KAoS services (DS, servlet and KPAT) the default target of the kaos-core subdirectory build.xml file can 
be used. Simple: 

1) open a terminal and go to the your_kaos_root \kaos\scripts\kaos-core directory 
2) type “ant” 
 

KPAT should appear within one minute with the Directory Service being the only registered agent, as in 
Figure 2. In general, you can usually start the Directory Service and KPAT once, and then start and stop 
agents without restarting either the Directory Service or KPAT. You will have to expand the Policy 
Management domain to see the Directory Service. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   16 

 

 

Figure 2 Initial KPAT with only Directory Service running 

 

The ant script for our example also starts KAoS for you, so you can skip this step and go directly to the 
tutorial script in your_kaos_root \kaos\scripts\tutorial and type “ant”. You should see KPAT start 
as in Figure 2, followed by our simple tutorial interface shown in Figure 3. This interface will 
demonstrate all the items discussed in this chapter. 

 

Figure 3 Tutorial GUI 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   17 

 

3.4 Creating Agents 
In order to make use of policies, most developers want actors upon which the policies can be applied. 
Typically these actors are referred to as agents in this document, but they could be robots, web services, 
grid services, or anything on which you would like to apply policies. 

The simplest method to create an agent is to extend KAoSActorImpl. This class provides all the basics for 
getting an agent started. You create one with a unique identifier (guid), name, list of domains to register in, 
and desired transport. The guid can be automatically generated by KAoS to ensure uniqueness, although for 
most projects using the name is sufficient. The transport for this tutorial is just the sting “tcp”. You can 
specify these parameters on the command line as well and pass the arguments to KAoSActorImpl for 
parsing. The command line arguments are: 

 –guid agentIdentifier {optional: if not supplied, the name will be used} 
 –name agentName 

–domain domainName 
– transport tcp 
 

Here is an example of an agent named RadioSpectrumPolicyAgent which only registers with the Directory 
Service and its arguments are: 

 –name: RadioSpectrumPolicyAgent 
–domain: IHMC 
 
 
public class RadioSpectrumPolicyAgent extends KAoSActorImpl 
{ 
    public RadioSpectrumPolicyAgent  (String names, domainNames) throws Exception 
    { 
        super (name, domainNames); 
        initialize(); 
    } 
 
    private void initialize() throws Exception 
    { 
        //Get the transport 
        String transport = CSIFactory.TCP_TRANSPORT; 
        Transoprt trans = new TransportImpl(); 
         trans.setName (transport); 
 
 
        //register the agent with Directory Service 
        super.registerWithKAoS(); 
    } 
 
    public static void main(String[] args) throws Exception 
    { 
        // create the agent 
       String domain = “IHMC”; 
       Vector<String> domains = new Vector<String>(); 
        domains.add (domain); 
 
        RadioSpectrumPolicyAgent  agent = new RadioSpectrumPolicyAgent  (“RadioSpectrumPolicyAgent”, domains); 
 
        // wait around until terminated 
        synchronized (Thread.currentThread()) 
        { 
            Thread.currentThread().wait(); 
        } 
    } 

 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   18 

 

The wait call on the thread prevents the agent from terminating, which would deregister the agent from 
KAoS. 

After the code is compiled, we can run the agent, so the RadioSpectrumPolicyAgent will be registered and 
be visible in KPAT as in Figure 4. 

 

Figure 4. RadioSpectrumPolicyAgent is registered in the IHMC domain in KPAT 

3.5 Creating Domains 
The easiest way to create domains is through the KAoSActorImpl arguments as described in the previous 
section. This class will automatically register the domains if needed. The domain must exist prior to trying 
to register in it or you will get an exception. You can register domains directly by using the Common 
Services Interface (see chapter 0). You can also create them through KPAT manually by going to the 
“Domains and Actors” tab and pressing the Add button. The domain will be added to the currently 
highlighted domain or the root domain if nothing is highlighted. Note that added domains will not be 
available next time you start KPAT unless you save and load the configuration (see chapter 14). 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   19 

 

 

Figure 4 Example of Nested Domains 

3.6 Creating Agent Descriptions 
Agent descriptions are one way to make use of the richness of using a semantic representation. By 
describing what group or groups an agent belongs to (domains), what class the agent belongs to 
(ontological type) and any properties the agent might have (such as capabilities). We will describe how this 
information is included in the agent description in the following sections and then show how we reason 
over them in chapter 4. 

3.6.1 Specifying Domains 
Agents must be registered into a domain and that domain must exist prior to the agent trying to register into 
it. KAoSActorImpl handles this for you. Domains are a nice way to group entities allowing you to write 
policies about groups instead of individuals. For example, you could write a policy that members of team A 
are not allow to send messages. They can represent organizational structures like teams, countries, or 
chains of command. They can also be used to represent roles such as scout, sentry, duty officer, or plant 
manager. You can assign an agent to more then one domain at a time and they can be changed at run time 
as necessary. 

3.6.2 Specifying Ontological Type 
By default agents register as agents (http://ontology.ihmc.us/Actor.owl#Agent). There are several other 
types specified in the KAoS onotology, such as Human and Robot. You can also extend these types to 
include your own types as described in section 12. Similar to domains, ontological types allow you to 
specify policies about groups instead of individuals. To set the ontological type simply: 

agentDescription.setEntityOntologicalType(url_of_type); 

You can assign more than one type to an agent and they can be changed a runtime as necessary. You can 
confirm that you have set the type properly by viewing the agent in KPAT under the Domains and Actors 
tab. On the right side, under Selected Entity Information you will see the default type of Agent and the 
additional type, Human, that was added by the tutorial GUI as shown in Figure . 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   20 

 

3.6.3 Specifying Properties 
Properties can be arbitrarily added to agent descriptions. You provide property-value pairs for each 
property you wish to define. You can assign multiple properties to an agent and they can be updated at 
runtime. Properties can be anything you would like such as location, clearance, or capabilities. We will 
demonstrate the property of “capabilities” which is a default property available with agent descriptions. As 
in section 3.3 we can create a new agent named SimpleAgentRobot. For this new class we override the 
getCapabilities method to define a capability of Target as follows: 

List<AgentCapability> capabilities = new ArrayList<AgentCapability>(); 
          AgentCapability agentCapability = new AgentCapabilityImpl(); 
          agentCapability.setName(ActionConcepts.Target()); 
          capabilities.add(agentCapability); 

 
Target is not a very meaning full property for a robot, but it is just for demonstration purposes and this 
tutorial is only using the core KAoS ontology and does not include the robot ontology extensions. The 
property is added to the agent’s description in the initialize method of SimpleAgent: 

List<AgentCapability> capabilites = getAgentCapabilities(); 
         _actorDesc.setCapabilities(capabilites); 

 
Now we will create a robot by selecting “Robot” as the type, “Rover” as the name and leaving “TeamA” as 
the domain. 

 

Figure 5 Rover Registered as a Robot 

Again, Rover will show up as an agent in the tutorial GUI (Figure 5) and in KPAT as in Figure 6.  Notice 
that the ontological type is different in Figure 5. 

 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   21 

 

 

Figure 6 Rover Registered in KPAT 

3.7 Registering Agents 
Once you have created the description you would like, simply call registerWithKAoS() if you have 
extended kaos.core.csi.KAoSActorImpl. You can also register through CSI as described in chapter 0. 
Registrations can be updated or replaced at runtime as necessary. 

3.8 Finding Agents 
Agents can be found by name, domain, ontological type, or capability. The details are provided in the 
chapter 0 under Query. Our tutorial GUI allows you to query by ontological type or capability and displays 
the results in the right hand side as shown in Figure 7. 

 

Figure 7 Query Results for Robots 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   22 

 

3.9 Sending Messages 
Although there are many ways to send messages this section will discuss using KAoSActorImpl to send 
messages. KAoSActorImpl provides a simple method that uses the transport layer of CSI (refer to chapter 
0): 

sendMessage(message, receiverName); 

Our tutorial GUI (Figure 8) allows you to type your text message next to the “Send message” button and 
select the sender and receiver. Then press the “Send message” button and you should see: 

[java] SenderName sent message to ReceiverName: message 
[java] RecieverName received message from SenderName: Message 

 

 

Figure 8 Sending a Message 

3.10 Receiving Messages 
To receive messages using the KAoS transport your agent must implement the MessageListener interface. 
The KAoSActorImpl class already does this, so if you are extending it you only need to override the 
receive message method as shown in SimpleAgent: 

public void receiveMessage(Serializable messageContent, KAoSActor sender) 
{ 

System.out.println(_actorDesc.getAgentNickname() + " received message from " + 
sender.getName() + ": " + messageContent); 

} 

3.11 Creating a Simple Action 
Action descriptions are the main datatype exchanged with KAoS: 

 kaos.core.csi.ActionInstanceDescription(Impl) 
 kaos.core.csi.OntPropertyDescription(Impl); 
 

Applications that check authorization policies must be able to create of action descriptions, and applications 
that handle obligations must be able to interpret them when received. Action descriptions can contain a 
complex value in the form of: 

 kaos.core.csi.OntInstanceDescription(Impl); 
 

Names used as types and properties in these data structures are from the Java vocabulary files generated 
using the mapping tool (chapter 12.4). 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   23 

 

We will use a simple ActionInstanceDescription(AID) to represent an action. You can create an AID in 
several ways including using OWL or just Strings from the ontology. Our example uses simple Strings 
from the ontology: 

            HashMap properties = new HashMap(); 
properties.put(ActionConcepts.hasDestination(), NamespaceValidator.validateURI(receiverName));  
properties.put(ActionConcepts.carriesMessage(), message); 

             aid = new ActionInstanceDescriptionImpl(null, 
                                                                                    ActionConcepts.CommunicationAction(), 
                                                                                    NamespaceValidator.validateURI(this.getName()), 
                                                                                    properties); 
 
ActionConcepts is the Java class that contains the corresponding strings from the KAoS OWL ontology. It 
is automatically generated using tools described in chapter 12.3. We are going to add two properties to the 
action. The first is hasDestination and the value is the intended receipiant. The second is carriesMessage 
and message is the value. When agents register with KAoS, their names are not valid URIs, so KAoS 
appends urn:KAoS# to make them valid. The NamespaceValidator.validateURI method appends the 
appropriate prefix. You could append it yourself, but using this method ensures you will not have problems 
if the prefix changes in the future. Forgetting to add this prefix when using names is the most frequent 
cause of problems people encounter. Please ensure whenever you use a name in a query or in an AID that 
you qualify as shown above. It will save you a lot of headaches. 

3.12 Adding a Simple Enforcer for Policy Checking 
Adding a simple enforcer is easy using our KAoSActorImpl. You just call the enforcePolicies method 
which does the following: 

        PolicyChecking policyChecking = CSIFactory.getPolicyChecking(); 
        Vector<ActionInstanceDescription> obligations = policyChecking.findPolicyDecision(aid, null); 
 
Basically this uses CSI (chapter 0) to get a Policy Checking interface and then uses the interface to get the 
policy decision. Ignore the returned obligations for now (see chapter0). The important feature for this 
section is that this method throws a KAoSSecurityException if the action is not authorized. There are many 
ways to provide enforcement, which we discuss in chapter 10. In this example we are providing our own 
enforcement, by checking the action and only allowing the action if it is authorized. Inside t 

3.13 Creating a Simple Policy without Using KPAT 
We can build policies using KPAT or adding some specifications in the RadioSpectrumPolicyAgent to 
build the policy and then using KPAT to validate the policy. We are going to start by using CSI to get the 
ontology service and then build a “Channel” class using the KAoSOntClassBuilder from the KAoS classes 
and load it. 

            OntologyService os = CSIFactory.getOntologyService(); 
             //Create a class and an ontology builder for Channel 
             KAoSOntClassBuilder channelBuilder = 
                new KAoSOntClassBuilderImpl (http://ontology.ihmc.us/Radio/RadioEntity.owl#” + policygui +“Channel”); 
 
             //Use the Radio ontology to load the new class 
             channelBuilder.setMainSuperClass (RadioEntityConcepts.Channel); 
              
We can set a Control Action class “RadioTransmissionAction” as follow: 

           String action = RadioActionConcepts.RadioTransmissionAction; 
 
            //Get a builder for the control action class 
            KAoSOntClassBuilder controlActionBuilder = new KAoSOntClassBuilderImpl ("ControlActionForPolicy" + 
                                                                                                                                              Policyguid);                                                                     



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   24 

 

             //Use the Radio ontology to load the new class “Channel” 
             controlActionBuilder.setMainSuperClass (action); 
 
Then, we set the property range “hasChannel” using the control action builder already defined and load the 
control action builder into DirectoryService using the SerializableOntModel class in KAoS: 
 
          controlActionBuilder.setPropertyRangeClass (RadioActionConcepts.hasChannel(), 
                                                                                     channelBuilder.getClassName()); 
 
We can set another property range to a class value already defined on existing KAoS ontologies like the 
Actor class. 
 
          controlActionBuilder.setPropertyRangeClass (ActionConcepts.performedBy(), ActorConcepts.Actor); 
 
Finally, load the model: 
 
          SerializableOntModelImpl model = controlActionBuilder.getOntModel(); 
          os.loadOntology (model, false); 
 
After this requirements are set we are ready to build the policy using the KAoS policy builder class and 
adding the policy id, name, modality, description and priority: 
 
          KAoSPolicyBuilder owlPolicyBuilder = new KAoSPolicyBuilderImpl(); 
          owlPolicyBuilder.setPolicyName (“RadioSpectrumPolicy”); 
          owlPolicyBuilder.setPolicyAuthor (“KAoSTeam”); 
          owlPolicyBuilder.setPolicyDescription ("This is the Radio spectrum policy"); 
          owlPolicyBuilder.setPriority (1); 
 
          //Set the control action to the owl policy builder 
          owlPolicyBuilder.setControlActionClass (controlActionBuilder); 
 
         //Get the policy message from the owl policy builder and add it to a list of policies 
        PolicyMsg polMsg = owlPolicyBuilder.getPolicyMsg(); 
        List<PolicyMsg> policyList = new ArrayList(); 
        policyList.add (polMsg); 
 
We get the policy management from CSI and update it with the new created policy so we can run the 
RadioSpectrumPolicy agent and see the policy display on KPAT. 
 
          PolicyManagement pm = CSIFactory.getPolicyManagement(); 
          pm.updatePolicies (policyList, new ArrayList(), new ArrayList()); 
 
We can run KAoS and KPAT so we can validate the policy. Figure 11 a. shows the RadioSpectrumPolicy 
that we created without using KPAT. 
 
 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   25 

 

 
 

Figure 9a RadioSectrumPolicydisplyed by KPAT 

 
 

3.14 Creating a Simple Policy Using KPAT 
We now have the basic requirements to demonstrate a simple policy. Using the KAoS tutorial, create two 
agents as we have done in the above sections. The policy we will create is a simple authorization policy. 
Authorization policies permit or deny actions. The basic format is an actor, modality and action.  For 
example: 

 Bob is not authorized to send messages to Sam 
    actor                       modality                                       action                  [context] 
 
In this policy, Bob is the actor, negative authorization is the modality, and sending messages is the action. 
We also include the context of “to Sam”. Context is optional. It is usually some property of the action, but 
can be complex. Context enables very rich policy specification. For our first policy we will not use any 
context, but will add some in future examples. 

Enter a message as in the sending message section and select Bob as the sender and Rover as the receiver.  
Instead of pressing “Send message” use the “Perform Communication Action” button. This will build the 
AID and check policies on the action. Since we have not created the policy yet, the result should see the 
button turn green indicating authorized as in Figure 10b. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   26 

 

 

Figure 10b Authorized Action 

Now let’s create a policy. We will create an authorization policy that says Bob is not authorized to perform 
Communication Actions. This means Bob can not perform any Communication Actions no matter what the 
properties. We will relax this in later policies, but for now go to KPAT and select Bob. Press the “New 
Policy” button and select “Use hypertext editor”. An editor will appear. Give the policy a name, a 
description, and a priority. The original priority mechanism was a simple integer ranking, so a value of one 
is fine. We provide other priority mechanisms, but they are covered elsewhere. Ignore the condition for 
now and move to the Policy Statement. Bob will be the default, since you selected Bob before starting the 
policy. Click on constrained and choose not authorized. Click on action and select CommunicationAction. 
Your policy should look like Figure 11. Now press OK. KPAT will remind you to commit your changes. 
Press commit and KPAT will tell you that it was successful. Congratulations! You just made your first 
policy. 

 

Figure 11 Policy not Authorizing Bob to Perform Communication Actions 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   27 

 

 

The policy is now viewable in KPAT by selecting Bob or going to the Policy tab as shown in Figure 12. 
KAoS provides a traditional form based version (classic editor) of the policy editor if you are 
uncomfortable with the hypertext version. 

 

Figure 12 Policy Tab Showing BobNoTalk Policy 

Now using the tutorial GUI and the same parameters, press “Perform Communication Action”. You should 
see the button turn red () indicating that the action was not authorized. When a policy check determines an 
action was not authorized, it throws a KAoS Security Exception. Our tutorial GUI catches this exception 
and turns the button red accordingly. The security exception can provide a lot of useful information about 
the violation, but the details are deferred until the CSI Policy discussion in chapter 0. 

 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   28 

 

Figure 13 Action Not Authorized 

4 Policy Reasoning Examples 
Now that you have a working policy system, we will build on the example from chapter 3 to create 
increasingly more complex policies. The goal of this section is to demonstrate the type of reasoning our 
system can do and highlight classes of policies with functional demonstrations. 

We will start by going to the tutorial script in your_kaos_root \kaos\scripts\tutorial and type “ant”.  
After KPAT and the tutorial GUI start, create three agents: 

1) Bob – a human on TeamA 
2) RoverA – a robot on TeamA 
3) RoverB – a robot on TeamB 

 

KPAT should look like Figure 14 Three actors with Two Teams in KPAT. This will give us sufficient 
structure to demonstrate several policy ideas. 

 

Figure 14 Three actors with Two Teams in KPAT 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   29 

 

4.1 Reasoning over Action Properties 
The first example is adding properties to the action. When you add properties to an action, you are basically 
adding context on which you can reason about. Taking our first example policy, we stated that Bob was not 
authorized to perform Communication Actions.  We may have wanted to restrict Bob completely, but we 
may only have wanted to restrict Bob from communicating with RoverB. We will create a policy in the 
same way as in section 3.14, except we will add an attribute. Click on “any attribute” and select “Add 
attribute”.  Now you should see a property add below the original text.  Click on the property and select 
“destination”.  This is the hasDestination property we described in section 0. You should no see values are 
[Select…].  Click on “Select” and choose “in the set”. This allows you to view instances.  Select “RoverB” 
from the list.  The policy now reads that Bob is not authorized to perform a Communication Action which 
has the attribute of all destination values in the set of RoverB. This sounds a little strange, but the 
awkwardness comes from the vagueness inherent in our language. The policy in fact states our intent which 
is that Bob is not authorized to perform a Communication Action that has the destination of RoverB. You 
can add multiple properties to an action and the properties can themselves have properties, but we will keep 
it simple to start. You can test this policy using the tutorial GUI. Bob should not be allowed to perform a 
Communication Action with RoverB as the receiver.  All other communication, including RoverB 
performing a Communication Action with Bob as the receiver, should be authorized. 

 

Figure 15 Bob is not authorized to Communicate with RoverB 

4.2 Reasoning over Domains 
In the previous policy we used instances (Bob and RoverB). While it is nice to be able to address instances 
specifically, it is also handy to reference groups (or domains) for efficiency and generality. Let’s say that 
we wanted to restrict all members on TeamA from communicating with all members on TeamB. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   30 

 

Start by removing the previous policy if it exists. This can be done by going to the “Policy” tab, selecting 
the policy and pressing the remove button. Don’t forget to commit the change. Now go to the “Actor 
Roles/Classes” tab and select “MembersOfDomainTeamA” as in Figure 16. 

 

Figure 16 Actor Roles/Classes Tab in KPAT 

We create the policy just like the previous one, except for values we select “of type” to view the classes and 
then select “MembersOfDomainTeamB”. When done the policy should look like Figure 17. After 
committing the policy, you can test it with the tutorial GUI. You should not be able to perform a 
Communication action between members of TeamA and members of TeamB. You will be able to send 
message from Bob to RoverA because they are both members of TeamA. 

 

 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   31 

 

 

Figure 17 TeamA is not Authorized to Communicate with TeamB 

4.3 Reasoning over Ontological Types 
Similar to domains, ontological types allow use to generalize our policies. For this example we will state 
that Robots are not authorized to communicate with humans. Again, remember to remove any old policies 
and commit the change. Go to the “Actor Roles/Classes” tab and select “Robot”. Create a new policy 
similar to the last, except select “Human” instead of “MembersOfDomainTeamB”. The policy should look 
like Figure 18. You can test this policy with the tutorial GUI. Neither RoverA nor RoverB should be able to 
perform a Communication Action with Bob as the destination. 

 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   32 

 

 

Figure 18 Robots are not Authorized to Communicate with Humans 

4.4 Additional Thoughts on Reasoning 
The most difficult part of creating policies is determining how to model the policy itself. For example, in 
section 4.1 we had a policy that restricted Bob from communicating with RoverB, but we probably also 
want the reciprocal to be true. This could be modeled with a second policy. Figuring out what to model as a 
domain, what to model as an ontological type and what to model as a property can be challenging. Like all 
things in life, the best way to learn is by doing; so dive in and try a few things out! 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   33 

 

5 Obligation Policies 
This section will demonstrate how to build the second major type of policy; the obligation. The previous 
examples were all authorization policies that prohibited certain actions. Obligations require an actor or 
group of actors to perform some action based on an associated condition, which we call the trigger. The 
basic format is similar to the authorization policy except that it includes a trigger action. Let’s say we 
wanted our robot to beep before it moves, to warn people in the area. For example: 

 Robot is obligated to beep before it moves 
     actor                   modality               action           trigger condition 
   

The main portion of this policy is very similar to that of an authorization policy. It has an actor (Robot) 
which can be an individual or group. It also has a modality (obligated) and an action (beep). In this case the 
action has no properties (context), but you can apply properties as we did for authorization policies. The 
last portion of the policy is the main difference. The trigger condition determines when this policy applies. 
Triggers typically have a temporal relation to the obligated action and we have provided terms to describe 
that relation. You can select whether you want the obligation to occur before or after the trigger action. 
Since actions are finite in time, you can also specify whether the before or after refers to the beginning or 
end of the trigger action. You can also specify whether the obligation must start or be completed by the 
specified time. This allows for several possibilities: 

1) Start obligation before trigger starts 
2) Start obligation after trigger starts 
3) Start obligation before trigger finishes 
4) Start obligation after trigger finishes 
5) Finish obligation before trigger starts 
6) Finish obligation after trigger starts 
7) Finish obligation before trigger finishes 
8) Finish obligation after trigger finishes 

 

These timing mechanisms can be used to help clarify the precise meaning of the obligation. For example, it 
would not make sense to beep after the movement has been completed, since the purpose of the obligation 
is to warn people of the movement. To make the policy clear we would specify to finish the beep action 
before starting the move action. This produces the desired result. The last thing to note about the trigger 
condition is that the trigger action can also have properties that help define context, just like the obligated 
action and authorization policy action. 

We will now walk through the steps of creating and testing an obligation policy. We will use the same 
tutorial code as before, but add a few pieces to make the obligation demonstration complete. We will start 
by going to the tutorial script in your_kaos_root \kaos\scripts\tutorial and type “ant”. After KPAT 
and the tutorial GUI start, create one agent (Figure 19): 

 RoverA – a robot on TeamA 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   34 

 

 

Figure 19 KPAT with Just one Agent 

5.1 Extending the KAoS Ontology 
KAoS provides a core ontology that provides the basic terms and relations necessary to build policies. To 
make an interesting and simple obligation, we will extend the KAoS Core Ontology with the KAoS Robot 
Ontology (http://ontology.ihmc.us/Robot/index.php). This ontology defines some simple robot actions (like 
beep and move) among other things. To load the ontology, make sure you are connected to the Internet and 
go to the “Ontology View” tab in KPAT (Figure 20). 

 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   35 

 

 

Figure 20 Ontology View Tab 

Press the “Load Namespace” button. You will see a small dialog box. Select (Figure 21). 

 

Figure 21 Load Namespace Dialog 

 

After a few seconds the KAoS Robot Ontology should be loaded. You will see additional classes in the 
view. You should see RobotAction.owl and if you select it you will see the various actions on the right side 
of KPAT(Figure 22). 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   36 

 

 

Figure 22 Ontology View Tab after KAoS Robot Ontology is loaded 

This was just a brief description of how to extend the KAoS Core Ontology. A full description can be 
found in chapter 12. 

5.2 Creating an Obligation Policy 
Now that we have the necessary terms to create our first obligation lets get started. You should still have 
your one agent running and the KAoS Robot Ontology loaded from the previous sections in this chapter. 
Go to the “Actor Roles/Domains” tab and select “Robot”, since we want this to apply to all robots. Now 
press the “New Policy” button and chose hypertext editor. Give the policy a name, a description and a 
priority of 1. Select the modality of “obligated.” You will see the trigger condition template added on the 
line below. Select the action of “Beep.” You will notice that more actions are available since we loaded an 
additional ontology. All of these actions are applicable to things that are from the robot class. Now in the 
trigger action select the actor to be the class of “Robot” and the action to be “Move.” We will not use any 
action properties for this simple example. When you are done, the policy should look like the one shown in 
Figure 23. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   37 

 

 

Figure 23 Obligation Policy Example 

5.3 Testing Obligations 
A simple way to test your obligation is using KPAT’s Policy Disclosure Tab. Go to the tab, select “Get 
Obligations” from the list of the left side, select “RoverA” as the actor on the right side, and select “Move” 
as the action on the right side. KPAT should now look like Figure 24. 

 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   38 

 

 

Figure 24 Policy Disclosure for Beep before Moving Obligation 

Now press “Get Obligations” and you should see the obligation to beep as shown in Figure 25. 

 

Figure 25 Obligation Disclosure Results for Beep before Moving Obligation 

5.4 Implementing Enforcement for Obligations 
Use the same method used for checking authorizations to check for obligations. You just call the 
enforcePolicies method which does the following: 

        PolicyChecking policyChecking = CSIFactory.getPolicyChecking(); 
        Vector<ActionInstanceDescription> obligations = policyChecking.findPolicyDecision(aid, null); 
        for(ActionInstanceDescription action: obligations) 
        { 
            performAction(action); 
        } 
 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   39 

 

We learned in chapter 3.12 that this method throws a KAoSSecurityException if the action is not authorized. 
It also executes any obligated actions using Java reflection. There are many ways to provide enforcement, 
which we discuss in chapter 10. In this example we are providing our own enforcement by checking the 
action and executing any obligations automatically. The main issue with obligations is how to execute 
obligations. Authorizations only require the enforcer to be able to prevent actions. Obligations must map 
down to concrete implementation in the end. For our example, we want to be able to make a robot beep, or 
more specifically execute a Beep method on our SimpleAgentRobot class. We use Java reflection to 
accomplish this task. The code to perform the reflection is in the performAction method. It requires the 
method name to match the ontological name. It also would require the action properties to be consistent 
with the method parameters, but we will not be using any properties for this first example. 

Now if you select rover in the drop down menu and press the “Perform Move Action” button is press 
(Figure 26), you will see a notification about the action in the command window like this: 

[java] RoverA: moving 

If the obligation policy from section 5.2 is in force, you will see the beep action occur before the move 
action like this: 

[java] RoverA: BEEP! 
[java] RoverA: moving 

 
You now have a working obligation! It is important to note that this enforcement example is very primitive 
and just designed to get you started. It did not take into account the information about timing and 
sequencing, even though it was available. The Beep came before the move simply because it was coded to 
perform obligations before executing the trigger action. There are more advanced ways to perform 
enforcement, but they are not covered by this introductory example. 

 

Figure 26 Perform Move Action 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   40 

 

6 Policy Prioritization 
It is very likely that if you make enough policies, they will eventually conflict in some ways. It is also very 
common, to desire to add an exception to a general rule. When policies conflict in some way, there must be 
a mechanism to determine which policy has precedence. KAoS provides a few ways to handle policy 
prioritization. 

6.1 Priority integer 
The simplest way is to use the priority integer associated with each policy. Although this way is not very 
elegant, it is very simple and is often sufficient. The higher integer value policy takes precedence over the 
lower integer value policy. Let’s do an example using the basic setup in chapter 4 with two teams each 
having one robot. We will then load the ontology and add the general obligation for robots to beep before 
moving as in chapter 0. Now when each robot is tasked to move, you should see the beep message: 

  [java] RoverA: BEEP! 
  [java] RoverA: moving 
  [java] RoverB: BEEP! 
  [java] RoverB: moving 

 
Now consider that RoverB is far away from any people and we would like to conserve power by not 
forcing it to beep unnecessarily. Let’s create a second policy that states that RoverB is not obligated to beep 
before moving. First go to the “Domains and Actors” tab and select “RoverB.” Now press the “New 
Policy” button and create a similar obligation as the first. The new policy should refer to RoverB instead of 
all Robots and it should be a negative obligation (not obligated) instead of a positive one. Also make sure 
the priority is 2 instead of the priority of 1 used on the first policy. The final policy should look like Figure 
27. 

 

Figure 27 Negative Obligation Policy 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   41 

 

Now if you go to the Policy tab you should see both policies. You can view there details by selecting either 
one. When you execute the “Perform Move Action” for each robot you should not get a Beep message from 
RoverB, because the higher priority policy waived the obligation: 

[java] RoverA: BEEP! 
[java] RoverA: moving 
[java] RoverB: moving 

 
*** NOTE: The policy priority adjustment arrow buttons on the policy tab do not work reliably. Edit the 
policy directly to change the priority for now 

*** NOTE: The automatic policy conflict detection and deconfliction is disabled until KAoS has been 
converted to use Pellet. 

*** NOTE: We are currently working on mechanisms to allow logical policy precedence constraints to be 
used as a method of policy prioritization as an alternative to the exclusive use of numeric priorities. This is 
a much more powerful and scalable approach than using numeric priorities alone. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   42 

 

7 Role-Value Maps 
Originally KAoS used only OWL-DL (initially DAML), which had difficulty dealing with situations where 
it was needed to define policies in which one element of an action’s context depended on the value of 
another part of the current context. Some examples include: 

 Loop Communication Action 
 Relation to the current location, time, other aspect of the current action instance context 
 Relation between Trigger Action and Obliged Action 
 Relation between a condition, state or history and the current action 

 

These requirements can be fulfilled by role-value-map semantics (see page 94 in The Description Logic 
Handbook). Maps allow policy to express equality or containment of values that has been reached through 
two chains of instance properties. KAoS was equipped with role-value-map semantics to defined policy 
actions when necessary. 

It is often useful to refer to aspects of a policy from within the policy itself. This sort of runtime binding 
enables the creation of general policies with specific context based application. The example we will use is 
providing feedback. The idea is that if somebody asks you to do something, you should let them know 
when it is done. Specifically, our policy will state that if a robot is tasked by a requestor, the robot should 
notify the requestor when the task is finished. We will connect this with our previous “Beep before you 
Move” obligation that we applied to robots. 

7.1 Creating a Policy Using Role-Value-Maps 

Start the tutorial up as in chapter 0, loading in the Robot ontology. Next create two agents on TeamA; Bob 
a human and Rover a robot. KPAT should now show both agents as in Figure 6. We will now create our 
policy by going to the Actor Roles/Classes tab and selecting Robot. Then press the New Policy button and 
select the hypertext editor. Name the policy and give it a priority of 1. Now fill in: 

 Robot is obligated to start performing CommunicationAction which has any attributes 

This will create a line for the trigger action. Before we provide attributes for the obligated action 
(CommunicationAction) we will first add the trigger action as follows: 

 after Robot finishes performing Action which has attributes 
 all status values are of type Finished 
 all requestedBy values are not in the set of this action’s performedBy values 

So the trigger action for this obligation is any action, or specifically any action that extends Action from the 
KAoS ontology. The trigger action must have a status of Finished (which includes Completed and 
Aborted). Our first direct use of the role-value-map is in the last line above, where we reference the current 
action’s properties. The performedBy property indicates which actor is actually performing the action. The 
requestedBy property indicates who has requested this action to be performed. What the last line is saying 
is that requestor should not be the same as the performer. The goal of this policy is to provide feedback to 
another actor. If the requestor is the performer (i.e. a self generated plan) then there is no reason to provide 
feedback to oneself. Now that we have the trigger action defined, let’s back up to the obligation again and 
add: 

Robot is obligated to start performing CommunicationAction which has any attributes 
All destination values equal the Trigger action’s requestedBy values 
All carriesMessage values equal the Trigger action’s triggerAction values 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   43 

 

Here we can see some role-value-mapping again as both properties reference the trigger action. The first 
says that the destination should be the requestor (i.e. send this feedback to the person who asked you to do 
the task). The second property says that the message should be the trigger action itself, including the 
current status. The completed policy should look like Figure 28. 

 

Figure 28 Role-Value Maps - Action Status Feedback Policy in KPAT 

These six lines of hypertext capture a very powerful concept of feedback in a very general way. It is 
external to any agent or robot code and visible and accessible to any human operators. 

7.2 Role-Value-Map Implementation Changes 

There are no general implementation changes to deal with role-value-maps, but our example required two 
specific modifications. To enforce this new policy, we need add status to an action after it completes and 
check policies after an action as well. Looking at the Move method of SimpleAgent: 

public void Move(String requestor) throws Exception 
    { 
        // build aid 
        HashMap properties = new HashMap(); 
        properties.put(ActionConcepts.requestedBy(), NamespaceValidator.validateURI(requestor)); 
        ActionInstanceDescription aid = 
 buildActionInstanceDescription("http://ontology.ihmc.us/Robot/Teleoperation.owl#Move", properties); 
 
        // perform enforcement 
        enforcePolicies(aid); 
 
        // perform move 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   44 

 

        System.out.println(_actorDesc.getAgentNickname() + ": moving as requested by " + requestor); 
 
        // move is now finished, so check policies again 
        OntPropertyDescription status = new OntPropertyDescriptionImpl(ActionStatusConcepts.hasStatus()); 
        status.setValue(ActionStatusConcepts.DefaultFinishedActionStatus()); 
        aid.addProperty(status); 
 
        // perform enforcement 
        enforcePolicies(aid); 

    } 

What we have added is the section after performing the move where we add a status property that has a 
value of DefaultFinishedActionStatus to the original Move action. This strange value is because OWL-DL 
does not allow classes to be values of property, so we simply define default instances and they have the 
same effect. Additionally we added another policy check. There are more general ways to architect the 
policy checking mechanism so that it is not part of every method, but we have done it this way in the 
tutorial to make it easier to follow along. 

While ontological classes allow for general reasoning over classes and very general policies, they do not 
provide the mechanics necessary for runtime binding of instances. Role-value-maps extend the ontological 
class functionality by allowing general policies to have runtime binding. 

7.3 Testing the Role-Value-Map Example 

With our actors registered and our new policy in place we are ready to test it. In the tutorial GUI, select 
Rover from the dropdown menu next to the Perform Move button. Make sure Bob is selected in the 
requestor dropdown menu as in Figure 29. Now press the Perform Move button. The output should be: 

[java] Rover: moving as requested by Bob 
[java] Rover sent message to urn:KAoS#Bob: Move DefaultFinishedActionStatus 
[java] Bob received message from Rover: Move DefaultFinishedActionStatus 

The first line indicates that the move is being performed and who requested it. The second is the obligation 
being fulfilled by the robot to provide feedback when done. The third line is the requestor receiving the 
feedback. 

 

Figure 29 Perform Move with Requestor (Tutorial GUI) 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   45 

 

8 Reasoning about History and Time 
The richness of context is what makes a policy system useful. One important aspect of context that can be 
very valuable is referring to history or past events. For example, you may want to limit the number of login 
attempts on a system to be three. This can be represented by a negative authorization policy that has context 
specifying three failed login attempts. The trouble with representing this is that the action being checked 
should not be responsible (or trusted) to provide its own history. This means that the fourth attempt would 
be just another “Login Action” with some credentials. Somewhere, the system must maintain a history of 
events so that we can reason about the current action in the context of previous ones. 

Our example is a simple authorization policy to prevent a third attempt to login if two attempts have failed 
in the previous thirty seconds. This will demonstrate both the event precedence (two previous attempts) and 
the temporal reasoning (within a specified time period). The first step is to run the tutorial script in 
your_kaos_root \kaos\scripts\tutorial by typing “ant” as in section 3.3. Next we will load an extension 
ontology containing computing terms as in section 5.1. The ontology to select is the ComptingOntology.owl 
as shown in Figure 30. This ontology contains the “login action” which we will be using. 

 

Figure 30 Loading Computing Ontology 

Next we create an authorization policy as in section 3.14 except this time we will add historical context. 
Start by going to the Actor Roles/Classes tab and selecting Actor. Now press the New Policy button and 
select the hypertext editor. Now we will create a policy that says “Actors are not authorized to login if they 
have failed to login three times previously.” Our first version will look like Figure 31. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   46 

 

 

Figure 31 Login Limit Policy 

You will notice the Policy Statement section looks like a normal negative authorization policy. What we 
have added is the Condition section. This section typically says that “This policy always applies.” 
However, we have added historical context that refers to the status of previous login attempts. Specifically, 
we refer to when Actors have performed LoginActions that have failed (bad password) at least two times. 
We will include the temporal portion that limits the context to the last thirty seconds. Setting the time to 
zero results in an unlimited (all recorded history) context. The LoginActions have an action property of 
status with a value of DefaultFailureActionStatus to indicate that the previous login attempts failed. 
Additionally, they include the requirement that the historical records considered where performed by the 
same actor as the action currently under consideration. If this attribute is omitted, a failure of any agent will 
block all agents from logging in. 

*** Note: there are currently two status concepts in the ontology; one in ActionStatus.owl and one in 
Entity.owl. These have different meanings and will not match each other. We are working to disambiguate 
them in KPAT. For now you can view the OWL representation to ensure you have selected the correct one. 
*** 

Save the policy and you are ready to test it. Create two agents as in Chapter 3. By default the password for 
any agent will be its name in lower case. Select an Agent from the dropdown menu next to the Login 
button. Enter the agents name in all lower case in the password text field. Press the Login button and the 
results indicator should turn green as in Figure 32. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   47 

 

 

Figure 32 Login Success 

Now change the password to something else and press the Login button again. You should see the results 
indicator turn yellow and display a count of the number of failed login attempts, as in Figure 33. 

 

Figure 33 Login Invalid 

After two failed attempts, as specified in the policy, the agent will no longer be authorized to login and the 
results indicator will turn red as in Figure 34. 

 

Figure 34 Login Not Authorized 

Try logging in with the correct password and you will also be denied. After thirty seconds, login attempts 
will be authorized again and if the correct password is used, they will login successfully. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   48 

 

Now we will take a look at the code behind this example. SimpleAgent has a method called LoginAction 
that contains all the code used for this example. As in the previous examples, we will be demonstrating 
how to perform self enforcement. For history based policies this means tracking the actions in a way 
consistent with history monitoring and policy evaluation. KAoS provides a history monitor through CSI as 
shown in the LoginAction: 

        HistoryMonitor historyMonitor = CSIFactory.getHistoryMonitor(); 

Now we need to log any failed login attempts. For the sake of this tutorial, we do this by checking the 
password and if it is not valid, we add a failure status and tell the history monitor about the attempt: 

OntPropertyDescriptionImpl hasStatusProperty = new OntPropertyDescriptionImpl(ActionStatusConcepts.hasStatus()); 
hasStatusProperty.addValue(ActionStatusConcepts.DefaultFailureActionStatus);            
logginAID.addProperty(hasStatusProperty); 

historyMonitor.logEvent(logginAID); 

The KAoS Guard also has access to the history monitor and performs the necessary checks for policy 
decisions. Note that the action being checked is always just a normal login action with username and 
password properties and makes no reference to history. 

8.1 Multiple History Conditions 

To add additional conditions simple click on the “[+/-]” at the end of the first condition. This will allow you 
to add an AND condition or remove a condition. To test this we will run the same login example as in the 
previous section. Once the policy is in ready, click on the “[+/-]”, circled in Figure 35, to add an additional 
history condition. Then add the history condition that any actor has performed a Communication Action 1 
time in the last 60 seconds. This condition is strictly to demonstrate the multiple condition policy and is not 
particularly meaningful. The policy should now look like Figure 36. Now have Bob login with the incorrect 
password multiple times, as in the last section, and it will not be blocked because of the AND condition. 
Press the “Perform Communication Action” button and then try to login and it will be blocked as shown in 
Figure 37, assuming the communication action occurred with 30 seconds of the two login failures. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   49 

 

 

Figure 35 Adding multiple conditions 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   50 

 

 

Figure 36 Multiple History Conditions 

 

 

Figure 37 Login Not Authorized after two failed attempts AND a Communication Action 

 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   51 

 

9 The API - Common Services Interface (CSI) 
KAoS provides the basic services for distributed computing, including message transport and directory 
services. Because the services are accessed through a well-defined Common Services Interface (CSI), 
application developers can selectively use subsets of its capabilities (e.g., registration, transport, publish-
subscribe, domain management, remote request forwarding, queries) as appropriate. Documentation can be 
found at http://ontology.ihmc.us/WorkArea/KAoS/doc/csi-api/index.html. 

There are several key services provided by CSI. They include: 

• Transport 
• Registration 
• Request 
• Query 
• Publish/Subscribe 
• Policy 

9.1 Transport 

Transport provides an abstraction to the underlying message passing mechanism, a simple way to bind to a 
given transport and send messages allowing applications to tailor their own communication protocol. 
Transport gives you low level access to the message transport, including binging to the transport and 
sending messages. To access the message transport simply: 

transportSupport = CSIFactory.getTransportSupport(); 
CSIFactory.setCurrentTransport(dsTransportName); 

 
Then you can send messages by: 

 
transportSupport.sendMessageTo(_actorDesc, receiverDesc, message); 

 
To receive messages, you must implement MessageListener and bind to the transport:  
 

transportSupport.bindMsgListenerToTransport(this, name, _actorDesc); 

9.2 Registration 

Registration provides the ability to publish an entity, its capabilities and status and update both the 
capabilities and status. Registration allows you to register an entity, assign properties to it, create groupings 
(domains). There is also a QueryRegistration for querying to get information about actors and there 
properties. The basic registration looks something like this: 

registration = CSIFactory.getRegistration(); 
registration.registerEntity(_actorDesc, true, true); 

 
To query for agents use a QueryRegistration as follows: 
 

query = CSIFactory.getQueryRegistration(); 
result = query.getAllAgents(); 

 
 

9.3 Request 

Request allows one entity to send a request to another typically to execute some action. The actions and 
properties of the action are specified using terms from the ontology. It is built on top of the registration and 
transport layers. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   52 

 

 

Figure 38 Request architecture 

9.4 Query 

Query allows an entity to retrieve information about another entity. The allowable queries are specified in 
the ontology, as well as the properties associated with each query. This is a “pull” method for getting 
information from an another actor. 

9.5 Publish/Subscribe 

Subscribe defines the operations to register, deregister and notify observers when the state of this 
observable changes or an event occurs that is associated with the observable. This is a “push” method. 

 

 

Figure 39 Subscribe architecture 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   53 

 

 

9.6 Policy 

Policies allow constraints to be applied to an entity. They can be dynamically modified to adjust the bounds 
on a particular entity based on the current context. The policy interface allows you to generate and modify 
policies, but also query them to understand the applicable policies and allowable ranges. 

 

10 Enforcement 

10.1 Action Instance Description 
As we discuss earlier an ActionInstanceDescription(AID) represents an action. For example, let’s define an 
AID for the RadioTransmissionAction with point of origin specified by latitude and longitude for the 
previous created RadioSpectrumPolicyAgent : 

ActionInstanceDescription radioTransmAID = new 
ActionInstanceDescriptionImpl (aidprefix + transimttedAIDnum, 
RadioActionConcepts.ChangeFrequancyAction, 
radioSpectrumPolAgent.getGUID()); 

where aidprefix is a string that we can define as radioTransmitionAID, 
transimttedAIDnum is the number of constructed AIDs and the RadioActionConcepts is the 
control action class that defined the ChangeFrequency action. 

10.2 Checking Authorization 

To check authorization we are going to define a property called hasTransmissionPower and add a value to 
it, for instance a double usedPower: 

OntPropertyDescription hasTransmissionPower = new 
OntPropertyDescriptionImpl(RadioEntityConcepts.hasPower()); 

hasTransmissionPower.addValue ((new Double(usedPower)).toString()); 
radioTransmAID.addProperty(hasTransmissionPower); 

Then we define the OntPropertyDescription for the latitude and longitude and add the property to the 
radioTransmAID from section 10.1: 

OntPropertyDescription hasTransmissionLocation = 
createXmsnLocationProperty(transimttedAIDnum, latitude, longitude); 
radioTransmAID.addProperty(hasTransmissionLocation); 

Then check authorization catching a KAoSSecurityException statement. If an exception is thrown means 
that is not authorized, otherwise it is granted: 

PolicyChecking policyChecking = CSIFactory.getPolicyChecking(); 
policyChecking.checkPermission(radioTransmitAID, null); 

The KAoSSecurityException will give the user a statement indicating why the policy was not granted. For 
instance "Original action not permitted. Obligations not attempted.", "Original action permitted. Obligation 
status inconsistent with action.", "Original action permitted. Service required by obligations failed." and 
"Original action permitted. Obligation actor not locatable." 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   54 

 

10.3  Checking Obligations 

For checking obligation we are going to use the findPolicyDecision method and will catch a 
KAoSSecurityException. The operation will give us a vector of AIDs which are going to perform the action 
if no exception is thrown. If an exception is thrown, the statement will indicate the problem as we described 
on section 10.2: 

         PolicyChecking policyChecking = CSIFactory.getPolicyChecking(); 
        Vector<ActionInstanceDescription> obligations = policyChecking.findPolicyDecision(aid, null); 
        for(ActionInstanceDescription action: obligations) 
        { 
            performAction(action); 
        } 
 

Each AID in the vector is ordered in a sequence of execution and each AID has a property related to the 
execution of the action. For instance the property hasStatus defined in the basic KAoS ontologies as 
http://ontology.ihmc.us/ActionStatus.owl. We can define a property value BEEP. Then using the robot 
example, we can say that “A robot is obligated to BEEP before the robot start moving”, where start moving 
is the trigger condition. 

When a guard has to enforce an obligation action, the guard constructs an obligation AID and tries to match 
it to other registered agents that can perform that action. If no agent is found, the obliged action is directed 
to the agent with the trigger action. 

Obligation policies can define kaos.policy.enforcement.obligation.ControlActionInstantiator The CAI 
instantiates an AID for the control action based on the specified BasicActionDescription for a control 
action and a trigger ActionInstanceDescription. The instantiators are added to the guard to check for 
obligation violations or to look for other actors to enforce an obligation action. The CAI add Role-Value-
Maps (discussed in section 7) . They fill in the possible values for the role value mapped properties in the 
controls action by following the role value path in the trigger action and querying for the possible values. 
For example: 

 control.hasDestination = Trigger.performedBy.isTeamMemberOf.hasLeader 

10.4   Policy Base Configuration 
For checking configuration for the radioTransmAID defined in 10.1, we start getting a list of properties 
names and add a property hasPower and obtain the kaos.core.csi.policy.PolicyAdvice from the CSIFactory 
which defines operations to advice the user as to which property values are allowed/forbidden for the given 
action based on a policy. Then we call the method getConfiguration(),which is used when the 
agent/enforcer has only partial information about an action and would like to determine what range of 
properties can be allowed by the policy set. The agent/enforcer partially fills an ActionInstanceDescription 
object and sends it to the method, which finds those policies that are applicable to this action and contain 
the given property. The method will then select only those values for the given properties that will not 
conflict with higher priority policies containing the given properties. The list propertyNames is containing 
the properties for which values are to be found. The object radioTransmAID will be used to find applicable 
policies. The boolean argument if is set to 'true', will result in returning only these values for the missing 
specified property which would satisfy some policy if used alone. The null argument refers to the 
PolicyDecisionObserver, an entity interested in receiving updates whenever policy decisions change. 

List<String> propertyNames = new ArrayList<String>(); 
propertyNames.add(RadioEntityConcepts.hasPower());          
PolicyAdvice myPolicyAdvice = CSIFactory.getPolicyAdvice(); 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   55 

 

Then, we will get the power configuration as: 

List< ActionInstanceDescription> powerConfiguration = 
myPolicyAdvice.getConfiguration (propertyNames, radioTransmitAID, true, 
null); 

The powerConfiguration list contains multiple ActionInstanceDescription objects which contain the 
allowed values for those properties. 

10.5  State Monitor 
Sensors which monitor the state of the system must implement the kaos.core.csi.extension.StateSensor 
interface. A StateSensor implements the method getOntologicalAttributes(), which returns a list of state 
types that the StateSensor is capable of monitoring. Upon startup, the StateManager reads a configuration 
file, instantiates each StateSensor listed in the configuration, and registers the StateSensor with itself as a 
listener for policy state conditions, based on the types of states that the StateSensor is interested in. 

The StateManager notifies a StateSensor about policy state conditions and obligation triggers, by calling 
StateSensor.registerInterest(OntClassInfo stateCondition), and its counterpart deregisterInterest() when the 
condition is no longer relevant (inherited from StateInterestListener interface). 

The StateSensor is responsible for notifying the StateManager with information about the state(s) it is 
monitoring. A static instance of the StateManager can be obtained by calling StateManager.getInstance(). 
Upon learning about a relevant policy state condition (via registerInterest()), the StateSensor may create a 
new instance of a State (using OntInstanceDescriptionImpl) and register it by calling 
StateManager.registerState(). 

The StateSensor should update the State instance when the monitored state changes, by calling 
StateManager.updateStateProperty() (or StateManager.updateStateProperties(), if multiple properties have 
changed). Likewise, when a state is no longer relevant to the current policies (via deregisterInterest()), the 
StateSensor should call StateManager.deregisterState(). 
 
In the example below, the policy state condition specifies a particular host to monitor. The StateSensor gets 
the hostname from the passed-in condition, and registers a new state instance with the StateManager for the 
host being monitored. The StateSensor then updates a property of the state instance, marking the host as 
currently being “down”. 

public void registerInterest(OntClassInfo state) 
{ 
      // get an instance of the StateManager 
      StateManager stateManager = StateManager.getInstance(); 
 
      // query the state to see which host we should be monitoring 
      String host = null; 
      Set<String> properties = state.getPropertyNames(); 
      try { 
         if (properties.contains(HOST_PROP)) { 
            host =   state.getInstancesForProperty(HOST_PROP).iterator().next(); 
         } 
      } 
 
 
      // create a new state instance and register it 
      if (host != null) { 
          String stateId = NamespaceValidator.validateURI(“fakeStateIdFor” + host); 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   56 

 

 
          OntInstanceDescriptionImpl stateInstance = new OntInstanceDescriptionImpl(stateId,                               
state.getMainSuperClassName()); 
 
          OntInstanceDescription hostInstance = new OntInstanceDescriptionImpl(host, HOST_TYPE); 
          stateInstance.addProperty(HOST_PROP, host, hostInstance); 
          stateManager.registerState(stateInstance); 
          stateManager.updateStateProperty(stateId, DOWN_PROP, "true"); 
      } 
   } 
 

10.6 History 
As we defined in section 8, the system must maintain a history of events so that we can reason about the 
current action in the context of previous ones. From the CSIFactory we get the history monitor for the 
RadioTransmissionAction and then we calculate the radioTransmAID for the hasTransmissionPower 
property. The logEvent method allows tracking the actions in a way consistent with history monitoring 
and policy evaluation. 

HistoryMonitor historyMonitor = CSIFactory.getHistoryMonitor();                     
OntPropertyDescriptionImpl hasTransmissionPower = new 
OntPropertyDescriptionImpl (RadioEntityConcepts.hasPower());                           
hasTransmissionPower.addValue ((new Double(usedPower)).toString()); 
radioTransmAID.addProperty(hasTransmissionPower);  
historyMonitor.logEvent(radioTransmAID); 

The KAoS Guard also has access to the history monitor and performs the necessary checks for policy 
decisions. 

10.7  Classifiers 
When classes as video messages are not understood by KAoS, we use classifiers that are class wrappers 
which KAoS can load and use. These classifiers provide custom capabilities that allow applications to 
make sophisticated policy decisions based on specific parameters of AIDs. 

 

10.8  Policy Callback Mechanism 
KAoS policies provide a callback mechanism that add or remove a policy when a decision changes. For 
instance, we get the AID for an agent called GatewayAgent and add a property hasPacket and a value 
VIDEO_CHANNEL. 

ActionInstanceDescription videoForwardAction = new 
ActionInstanceDescriptionImpl(GatewayAgent.aidprefix + (new 
VMID()).toString(), NetworkActionConcepts.ForwardDataAction(), 
myGatewayAgent.getGUID());                          
OntPropertyDescription hasPacketForVideo = new 
OntPropertyDescriptionImpl(NetworkActionConcepts.hasPacket()); 
hasPacketForVideo.addValue(VIDEO_CHANNEL + "Packet"); 

Then we get define a PolicyDecisionObserver pObserver, an entity interested in receiving updates 
whenever policy decisions change. When the observer is notified that a change occurred then we get the 
.AllowableValuesForActionProperties from the policy advice which returns a list of the updated  AID 
objects. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   57 

 

PolicyDecisionObserver pObserver = new 
GatewayControlAgent.GatewayLinksPolicyDecisionObserver();  
List<ActionInstanceDescription> myVideoOptions = 
myPolicyAdvice.getConfiguration(serachPropertyNames,videoForwardAction,   
false, pObserver); 

11 KAoS Core Ontology 
KAoS provides a set of generic ontology concepts needed for basic policy creation. These are available at: 
http://ontology.ihmc.us/ontology.html. They describe actors, actions and a variety of other general concepts 
such as: 

 Entity 
 Attribute 
 Group 
 Actor 
 Situation 
 Condition 
 Action 
 ActionStatus 
 ActionHistory 
 Place 
 Message 
 Policy 

 

You can also find several application specific extensions. 

*** NOTE: The ontology has recently received a major update, as part of the standards efforts underway 
with the Federal Digital Policy Management initiative. 

12 Extending the KAoS Ontology 
In general, the KAoS Core Ontology usually has to be extended with concepts specific to the application 
under development. The application ontology should contain definitions for all the concepts for which the 
business logic code can provide information. For example, through code instrumentation, the business logic 
for the control of radios can usually provide required information about transmission parameters. Thus, all 
these concepts should be present explicitly in the ontology, in order that policies can refer to them. Three 
common extensions are for Actors, Action and Entities. 

12.1 Extending Actor 
The Action ontology is typically extended by some ApplicationActor.owl. This extension contains 
definitions of application actor classes (or roles) with their properties. The new Action classes should be 
subclasses of http://ontology.ihmc.us/Actor.owl#Actor. 

12.2 Extending Action 
The Action ontology is typically extended by some ApplicationAction.owl. This extension contains 
definitions of application action classes with their specific properties. The new Action classes should be 
subclasses of http://ontology.ihmc.us/Action.owl#Action. The properties of the Action classes should be 
subproperties of either http://ontology.ihmc.us/Action.owl#hasDataContext or 
http://ontology.ihmc.us/Action.owl#hasObjectContext in order to provide hints to KPAT about their 
importance. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   58 

 

12.3 Extending Entity 
The Action ontology is typically extended by some ApplicationEntity.owl. This extension contains 
definitions of application specific entities with their properties, which will be used to define context of the 
actions. The new Entity classes should be a subclasses of http://ontology.ihmc.us/Entity.owl#Entity (or 
more specific subclass). 

12.4 Java Ontology Mapping Tool 
Development of code linking the business logic with KAoS policies and services requires references to the 
URLs of ontology concepts. KAoS provides a simple tool to create Java constants for every concept 
defined in a given ontology with values equals to their URLs. In the script/generateOntologyVocabulary, 
create an ant build file with target running OntologyMapper for each defined ontology file. For example see 
target vocabulary-selected in KAoS_HOME/scripts/kaos-tool. No explicit URLs should be used in the code. 
Based on experience, such a practice creates difficult debugging problem (misspelled URLs, ontology 
changes). Re-running the script automatically updates the URLs and concepts, and keeps the code 
consistent with the ontology. 

*** NOTE: Additional mapping tools (e.g., for Web services) are currently being defined. Should we 
mention some of these? 

12.5 Example Ontology Extension 
Here is an example of extending the ontology: 

 Build the ontology: 
 Create an Actor called Printer that extends Actor 
 Create an Action called Print that extends Action 
 Add property to Print called Output 
 Build the java class using the ontology tool 
 Host the ontology locally 
 Register an actor as a Printer, see that Print is an available action in KPAT, Have somebody 

request the Printer to Print some Output. 
 Once the ontology is build you can use a web server to store it and then run KPAT using the 

Ontology View tab to load the ontology. For instance, create an ontology named MyOntology.owl 
. Then run a web server as TOMCAT and copy the ontology to the webapps\ROOT directory. Run 
KPAT and select the Ontology View tab , then press the Load Namespace button and write the url 
of the ontology as follow: http://localhost:8080/MyOntology.owl and press the Load Namespace 
button to load it. The ontology will be shown in the Namespace List in KPAT. (See fig.X ). 

**  http://localhost/test1.owl ** 

 

13 Running without Internet Access 
KAoS typically runs with the expectation of Internet access. This access is used to download the current 
KAoS ontologies and any other required ontologies. If Internet access is not available, slow or intermittent, 
it may be desirable to use an Internet proxy. KAoS provides an ontology proxy tool for this purpose. 

13.1 Starting the Ontology Proxy 
To start the ontology proxy tool go to your_kaos_root \kaos\scripts\kaos-tools and type “ant 
ontology-proxy”. You should see the Ontology Proxy GUI similar to Figure 40 Ontology Prox. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   59 

 

  

Figure 40 Ontology Proxy 

13.2 Making an Ontology Snapshot 
The ontology files should be configured with their final static namespace. Then, they should be loaded into 
the web server configured with a URL corresponding to this namespace. You will need to be connected to 
the source of the ontology in order create the ontology snapshot, but once it is created, this is no longer 
necessary. An ontology snapshot puts all the required ontologies in a single file. On the “create Snapshot” 
tab, select the KAoS ontology from the drop down list. Press “Gather Ontologies” so the proxy will get the 
ontologies from the web. Then add any additional ontologies your application needs, gathering each one. 
You can type in the URLs if they are not included in the list. When you have all the ontologies you need 
listed, press “Save Ontology Snapshot” and a snapshot of your desired ontology configuration will be saved 
to a file with the extension “.ont”. The tab “Edit Snapshot” allows modification or automatically refreshing 
of an existing snapshot. It is also very useful when ontologies have to be gathered from disparate domains 
(e.g. public Internet and corporate network). 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   60 

 

 

 

13.3 Ontology Proxy 
To run the proxy, go to the “Ontology Provider” tab. Select load snapshot and choose the ontology you 
want to load. You should see an indication in the status window when snapshot is loaded. Now just press 
“Start” and the ontology proxy is ready. Once created and tested, we provide a script that enables the 
automatic loading and starting of the proxy with a particular snapshot. See the runProxyWithOntologySnap 
target for an example. 

 

14 Saving and Loading Configurations 

14.1 Saving a Policy Snapshot 
Created policies and other concepts created in this process should be saved in policy snapshot file. This file 
can be created from KPAT tab “Configuration”. The file should be saved in 
config/policyConfigurationSnapshots/Name.cfg. In scripts/runKAoSwithPolicyConfiguration create ant 
build file with target running KAoS with this policy snapshot preloaded; make sure to set up the first two 
properties correctly. 

 
<property name="ontology.file" value="${basedir}/config/ontologySnapshots/ON.ont" /> 
<property name="directory.snapshot" value="${basedir}/config/policyConfigurationSnapshots/PS.cfg"/> 
<target name="runKAoSwithL3078" description="Start KAoS with policy and ontolgy snapshot"> 
<fail unless="env.KAOS_HOME" message="Please set the environment variable KAOS_HOME" /> 
<echo message = "Starting ontology proxy, KAoS DS, Servlet and KPAT"/> 
<parallel threadCount="4"> 
<ant inheritAll="true" antfile="scripts/kaos-tools/build.xml" target="ontology-proxy-autostart" 
dir="${env.KAOS_HOME}"/> 
<sequential> 
<sleep seconds="8" /> 
<ant inheritAll="true" antfile="scripts/kaos-core/build.xml" target="run-kaos" 
dir="${env.KAOS_HOME}"/> 
</sequential> 
</parallel> 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   61 

 

</target> 
 

14.2 Configuring an Ant Script 
In order for existing applications to be integrated with KAoS at runtime certain parameters have to be 
provided. These parameters make KAoS functionality accessible from the modified application source 
code. The following elements are needed in the target starting the application: 

<classpath> 
<!-- Include all jar files in the KAoS ${lib} directory --> 
<fileset dir="${env.KAOS_HOME}/lib"> 
<include name="**/*.jar" /> 
<exclude name="**/${optionalLib}/*.jar" /> 
</fileset> 
<!-- Include the path to the config files --> 
<pathelement path="${env.KAOS_HOME}/${cfgPath}"/> 
</classpath> 
<jvmarg value="-Dkaos.core.service.default=Guard.cfg" /> 
<jvmarg value="- 
Dkaos.core.policy.service.default=${env.KAOS_HOME}/${config}/guardConfiguration.cfg" /> 
<jvmarg value="-Djava.util.logging.config.file=${config}/logging.properties" /> 

 

If the jar libraries and other configuration parameters are correctly specified, then all available KAoS 
functionality can be accessed by retrieving the appropriate implementation of the given subset of 
functionality. This is done by calling a specific factory method on static class: kaos.core.csi.CSIFactor. 
Such calls will create background connections with the KAoS Directory Service. 

15 Policy Templates 
To simplify policy construction, KPAT provides two additional policy creation interfaces, in addition to 
the generic policy creation interface: 

 The Policy Wizard takes a user step-by-step through the policy creation process. Information selected 
for presentation is conditioned on whatever has been selected previously, making the experience as 
simple and foolproof as possible. 

 The Policy Template Editor allows custom policy editors for a given kind of policies to be created by 
point-and-click methods. For instance, if an application will require the definition of several policies 
governing publish/subscribe actions, a custom policy editor can be quickly created by limiting choices 
to just what is needed, thus eliminating the requirement for repetitive selections when a given type of 
policy has to be created multiple times. 

 

16 Policy Conflict Resolution 
When a policy conflict occurs, the KPAT user is presented with a dialog for resolving the conflict. 
In the case of a direct conflict (same priority), the user has some options: 

 change the priority of one of the conflicting policies 
 make an exception (e.g. this policy doesn't apply for mission X) 
 remove one of the conflicting policies 

 
The policy resolution dialog allows the option to “accept” policy conflict for overlapping policies, where 
acceptance indicates that you are OK with the overlap / redundancy. For directly conflicting policies, 
acceptance indicates that you do not want to resolve the conflict at this time (e.g. save it for runtime 
resolution at the guard level). The dialog is shown in Fig.41. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   62 

 

 
In the case of running a distributed directory service, the user may request permission to change policies 
forwarded by a directory service of higher authority, and provide a reason for making the change. The 
original directory service is notified of the request, and its user decides whether to allow the modification 
(via KPAT). The modified policy only affects the directory service which requested the modification. This 
case is depicted in Figs. 42 and 43. 
 

 
 
 

Fig.41. Policy Conflict Resolution Dialog 

 

 

Fig.42. Request modification of forwarded policy. 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   63 

 

 

Fig. 43. Ask source if the modification is allowed. 

 

17 Advanced Features 

17.1 Distributed Directory Service 
KAoS supports the ability to have multiple directory services running concurrently. The directories may 
optionally be configured to share policies between each other. 

Directory services in a LAN will automatically find each other, using the KAoS P2P discovery mechanism 
(assuming they belong to the same discovery-group, as specified in the message transport configuration 
file). They must each have a unique name. 

Agents also automatically find the directory services within their discovery-group, using the KAoS P2P 
discovery mechanism. By default, the first directory service to respond to a discovery request will be used 
by the agent as the primary directory service. A preferred directory service may be specified in the agent's 
message transport configuration file, by adding the property 'preferredHost' (for a particular hostname) or 
'entityId' (for a particular agent name) to the 'PreferredDS' locator description: 

    (locators 

      (PreferredDS 

        (discoveryEnabled true) 

        (discoveryGroup kaos) 

        (entityType DirectoryService) 

        (preferredHost '10.0.0.2') 

      ) 

      … 

    ) 



Role-Value Maps 

Institute for Human and Machine Cognition                                                                                   64 

 

 
Policy subscriptions between directories are established by using the KPAT GUI. From the policies tab, 
right-clicking on a policy (or policy set) presents the user with an option to “Setup peer subscriptions”. 
From this dialog, the user may choose one or more peer directory services with which to share a policy (or 
policy set). After a subscription is established, any updates to the policy or policy set will be synchronized 
with the remote directory. The subscriptions are saved in the configuration snapshot of the directory service 
used to establish the subscriptions. 

To run the distributed directory service, call the ant target 'peerDistributed' before calling the normal target 
'run-ds' (from the kaos-core ant script) . You should also pass in parameters for “agent.name” and “ds.cfg”, 
which specifies the name of the directory service, and the configuration file to use, respectively (the 
configuration file must be unique for each directory, because the agent name is also contained in the 
message transport section of the configuration). For example: 

ant -Dagent.name=DirectoryService2 -Dds.cfg=DS.cfg peerDistributed run-ds 

 

18 Troubleshooting 
My agent seems to start, the domain shows up, but the agent does not show up in KPAT: 

The most likely problem is that your agent starts registers and then terminates immediately deregistering 
from KPAT. Make sure you have a “Thread.wait()” in your main method. 

 

My policies don’t seem to work at all. I made a simple authorization policy preventing an action 
without any properties, but it does not stop the action: 

The most likely cause is forgetting to add this prefix when using names 

 

I get an error about “java.net.BindException: Address already in use: JVM_Bind” 

The most likely cause is that you already have a directory service running. Make sure you kill all previous 
processes before starting. If it still happens, check your running processes using Task Manager or an 
equivalent application. Kill any java.exe processes to ensure nothing is lingering.



Institute for Human and Machine Cognition                                                                                   66 

Appendix 

A References 

1. SAFE User Documentation, Document Revision 3.0 

B Definitions, Abbreviations, and Acronyms 

CSI – Cougaar Software Inc. Previously NAI Labs, developers of security extensions to Ultra*Log 

DM – The KAoS Domain Manager. It is responsible for registering agents consistent with policies on 
domain membership, for ensuring policy consistency at all levels of a domain hierarchy, for notifying 
Guards in the event of a policy change, and for storing policies in the repository. A domain is a collection 
of Cougaar agents, potentially spanning multiple hosts and Cougaar organizational structures, registered to 
a common domain manager as a common point of administration. 

Guards. Guards interpret policies that have been approved by the DM and enforce them with appropriate 
mechanisms, including Cougaar Binders, Java access control, Nomads resource control, and obligation 
policy monitors. 

IHMC – Institute for Human & Machine Cognition. A research organization associated with the University 
of West Florida. 

IP – Internet Protocol. A widely used protocol allowing computers to share data. 

JAAS – Java Authentication and Authorization Services 

JDK – The Java Development Kit. 

JVM – The Java Virtual Machine. A bytecode interpreter for the Java Programming Language. See also 
JDK. 

KAoS – Knowledgeable Agent-oriented System. An agent framework developed by The Boeing Company 
and IHMC that is now in the public domain. 

KPAT – KAoS Policy Administration Tool. The graphical user interface to managing policies in the KAoS 
framework. 

MS – Microsoft. The large software company responsible for producing the Windows series of computer 
operating systems and numerous anit-trust activities. 

OWL – Web Ontology Language (http://www.w3.org/TR/owl-features) 

SAFE – Survivable Agent Framework Extensions. The name of the project whose goal is to extend the 
Cougaar agent framework with additional features to support policy-based domain management of Cougaar 
components and host resources.TCP – Transmission Control Protocol. Typically used in conjuction with 
IP. 

VM – Virtual Machine. Shorthand in this context for the Java Virtual Machine (JVM). 

XML – A mnemonic for eXtensible Markup Language. 

 


