N
L

KAOS Tutorial

Andrzej Uszok
auszok@ihmec.us

Jeffrey Bradshaw
joradshaw@ihmc.us

AN

KA0S Policy Service Motivations

A
Y

L

Allow for policies which are human expressible but
machine enforceable

= permit effortless extension of policy vocabulary to suite
domain needs and understanding of the domain only
limited by the mapping to the business logic of the
application

= present user-friendly interface to the policy system

Provide sophisticated policy query, analysis and explanation
mechanisms

Support for interoperability by using ontology and standards
for the Semantic Web

Support extendable framework architecture allowing for easy
extension, customization and integration of the policy service
with diverse target application environments

Provide policy distribution and decision infrastructure, which
IS highly-efficient and tolerant to disconnections

KAoS Architecture

Human interface: A hypertext-like
graphlcal interface for policy

N

specification in the form of natural
English sentences. The vocabulary
Is automatically provided from
ontology.

Policy Management representation.
Used to encode and manage policy-
related information in OWL. Inside
DS it is used for policy analysis and
deconfliction.

Policy Decision and Enforcement
representation; KAoS automatically
“compiles” OWL policies to an
efficient lookup format that
provides the grounding of abstract
ontology terms, connecting them to
the instances in the runtime
environment and to other policy-
related information. These polices are
sent from DS to Guards, which serve
as local policy decision points.

Human Interface Layer (Hypertext Policies)

Enforcement /

KAoS Ontology and Policy
Semantics

Use of Ontology in KA0OS

N

= Descriptions of actors, actions and situations at
different levels of abstraction

m Possibility to dynamically calculate relations
among policy, platform entities, and other
policies based on concepts ontology relations

= Dynamic extension of the service framework by
specifying platform ontology and linking it with
the generic KAoS ontology

» Extension of the KAoS framework itself by
adding new ontologically-described components

N

KA0S Ontology Management

Ontologies expressed in OWL

KAO0S defines core set of ontologies;
- loaded during its bootstrap

Ontology specific for the application extend
core ontology;

- loaded by KAoS after core ontologies

External tools used to create these
ontologies:

- Protégé, SWOOP and validatores from daml.org

KAoS allows to extend these ontologies by
creating instances and subclasses

When Internet connection is not available the
KAOS ontology proxy can be used

N

KA0oS Core Ontology

= Web Site: ontology.ihmc.us contains OWL ontologies of:
Entity

Attribute

Group

Actor

Situation

Condition
Action
ActionStatus
ActionHistory
Place
Message

= Policy

= Plus many application specific ontologies extending the core
ones

N

KAO0S Policies

Policy constrains/amends user/system activity/state

Main types of supported policies:

= Authorization — Allow or Forbid actions

= Obligation — Obliged actions or Waive obligation

= Associated with Conditions activating the obligation

Includes a description (class) of the controlled
situation

= Constitutes a test (template) for the applicability of the policy

= Contain definition of action Subject — extension of traditional

policy Role

OWL vocabularies allows for declarative definition of
policy applicability
Policy posses a priority, which enables it to take
precedence above contradicting ones

KA0S Policy Semantic

N

hasState hasHistory
v v

hasTestForSuccess

isTa EventHistory |«

? f isa
hasPertinentState hasPertinentHistory

PollcySet ActionHistory

hasAlternative ActionifObligationFailure

hasMember f

requiresConditions
4_ hasPriority \ . \
Policy L /
[darTie] ¢ g
controls —jp.

hasUpdate TimeStamp

hasObligationStartDeadline

hasStatus

oblige

hasEnforcementSite

isa
trigger

hasObligationConstraint

ObligationP olicy

AvuthonzationPolicy

isa

PosObligationFolicy

l NeghuthenzationPolicy]

NegObligationPolicy

PoshuthorizationPolicy]

hasAdditionAuthorizationFor ThePeriodOfObligation

ObligationC onstraint

hasObligationFinishDeadline

[StartBeforeRefA chionStart l

a

’ FinishBeforeFefActionStart]

FiushWithSuccess

i
| StartBeforeRefActionEnd |

[T

| FinishB eforeRefActionEnd |

| StartAfterRefA ctionEnd |

hasAdditionalPolicylfObligationFailure

Policy Example:
Any communication outside the Arabello domain, which is not encrypted is forbidden.
<?xml version=""1.0"" ?>

<IDOCTYPE P1 [
<IENTITY policy "http://ontology.ihmc.us/Policy.owl#" >

Va <IENTITY action "http://ontology.ihmc.us/Action.owl#" >
N <IENTITY domains *‘http://ontology.ihmc.us/ExamplePolicy/Domains.owl#™ >
1>
<rdf:RDF
xmlns:rdf=""http://www.w3.0rg/1999/02/22-rdf-syntax-ns#""
xmlns:rdfs=""http://www.w3.0rg/2000/01/rdf-schema#""
xmlns:owl=""http://www.owl.org/2001/03/owl+oil#"
xmlns:policy=""http://ontology.ihmc.us/Policy.owl#""
>

<owl:Ontology rdf:about="""">

<owl:versionInfo>$ http://ontology.ihmc.us/ExamplePolicy/ACP1.owl $</owl:versioninfo>
</owl:Ontology>

<owl:Class rdf:1D=""OutsiteArabelloCommunicationAction**>
<owl:intersectionOf rdf:parseType=""owl:collection**>
<owl:Class rdf:about="'&action;NonEncryptedCommunicationAction"" />
<owl:Restriction>
<owl:onProperty rdf:resource=""&action;#performedBy"" />
<owl:toClass rdf:resource="'&domains; MembersOfDomainArabello-HQ" />
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="'&action;#hasDestination" />
<owl:toClass rdf:resource=""&domains;notMembersOfDomainArabello-HQ" />
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

o|dwex3

xeluAs Adljod IMO

<policy:NegAuthorizationPolicy rdf:1D=""ArabelloCommunicationPolicyl1''>
<policy:controls rdf:resource=""#OutsiteArabelloCommunicationAction ™ />
<policy:hasEnforcementSite rdf:resource="'&policy;ActorSite™ />
<policy:hasPriority>10</policy:hasPriority>
<policy:hasUpdate TimeStamp>446744445544</policy:hasUpdateTimeStamp>
</policy:NegAuthorizationPolicy>

Beyond Description Logic for
Policy Representation

N
\J

= Qriginally KAoS used only OWL-DL (initially DAML)

= Limited in situations when needed to define policies In
which one element of an action’s context depended on
the value of another part of the current context:
- Example — Loop Communication Action

- Relation to the current location, time, other aspect of the
current action instance context

- Relation between Trigger Action and Obliged Action

= These requirements can be fulfill by role-value-map
semantics (see page 94 in The Description Logic
Handbook)

= Mmaps allow policy to express equality or containment of values
that has been reached through two chains of instance
properties
= KAoS was equipped with role-value-map semantics to
defined policy actions when necessary

Example of policies needing
role-value-map semantic

N

Service Provider B cannot report back on
results of operations to parties other than
those which have provided the data, unless
the aata provider has authorized another

party.

Spatial Ontology and Policies

N

Spatial semantics is needed for policies
dealing with physical objects and theirs
relations: robots, radios,
humans/teams, vehicles, etc.

KAOS Spatial Reasoning Component
(Ksparc)
= Allows to querying for relative and
absolute spatial relations among
people, objects, and robots

= (Calculates absolute values of the
relations: distance, angles, etc

= Consist of set of local spatial
reasoner (integrated with KA0S
Guards) and a global spatial
reasoner (integrated with KAoS DS)
coordinating the reasoning

Supported Spatial relation

® threeDimensionsSpatialProperty
= above
= below
= higher
= |ower
& referencedSpatialProperty
s furtherToThelLeft
s furtherToTheRight
s higher
= |ower
= between
&® orientationSpatialProperty
= inFront
behind
toTheLeft
toTheRight
above
below
towards
backwards
currentlySee
furtherToTheLeft
furtherToTheRight
higher
lower

() a @ ® §E §E §E §E §E ®E ®E ®E &®

S
S
®

outside
canSee

= currentlySee

e e

Inferencing Engine Integration

N
\J

= Used in KAoS to reason about ontological
relations and policies

= Stanford JTP - Java Theory Prover

- First-order logic reasoning:

= With support for description logic reasoning over OWL
defined Knowledge Bases

- Support for non-monotonic reasoning:
= Untell operation

- Framework architecture allowing for adding new
specialized sub-reasoners

@ Currently integrating with Pellet through the
developed generic reasoner layer

- Isolates from specific reasoner

KAoS Policy Interface

= Makes Transparent complexity of policy reasoning

= |ts input is the description of a tested situation

= Allow to investigate how policies affect actions:
7est Permission - verifies authorization to perform a

given action

Get Obligations — gets a list of actions obliged in the given
situation

Get Configuration — gets possible values for a questioned
action property, which will make the specified action authorized

Make Compliant - transform the action an actor tries to
perform from a policy forbidden to a closed one which is policy
permitted (in progress)

= Mechanism to overwrite policy in certain situation by
human or adjustable autonomy system

= Available as Java API or through remote network calls

N

Policy Analyses

N

" Human needs to know policy relations
and correct those resulting In incorrect
or unintended policy decisions

= Given policy can be overlap by some

higher priority policy (or by a sum of
such policies)
- If fully overlap then policy Is irrelevant

= Policy can overlap with the same
priority policy resulting in policy
conflict

Example of KAoS Reasoning:
Resolving Three Types of Policy Conflicts

N

Authorization

Obligation

Conflict analysis and other powerful forms of reasoning become more
critical when policies and situations are changing rapidly in dynamic and
tactical environments

Notification about policy conflict

/]
U
& Precedence Undetermined E]
— Committed Policy ~ Uncommitted Policy
Name: test2 Mame: test1
ID: #policy-fc694fan-00f4-0000-28000-0000deadheef ID: #policy-fc680che-00f4-0000-8000-0000deadbeef
Description: |Policy test? || |Description: [Palicy test] -~
has a priority of 1 has a priority of 1
has atimestamp oftimestamp not set . has atimestamp oftimestamp not set
and iz in farce and iz in force
The policy states thatitis - The policy states thatitis -
Priority: Priority:
| Change Committed Policy || Change Uncommitted Policy || Remove Committed Policy || Remove Uncommitted Policy |

= Remove Policy. one of the overlapping policies can be completely
removed,

= Change Priority. priorities of the policies can be modify so they either
do not conflict or they alter the precedence relation

= Harmonize Policy. the controlled action of the selected overlapping
policy can be modified using an automatic harmonization algorithm to
eliminate their overlap

= Split Policy. the controlled action of the selected overlapping policy can
be automatically split into two parts: one part that overlaps with the
other policy and the other which does not. Then the priorities of these
parts can be modified independently. The splitting algorithm is similar
to the harmonization and is currently in development.

N

Description logic reasoning

= Subsumption-based reasoning used for
determination of disjointness:

- Finding policy conflicts by determining Iif two

classes of controlled actions are disjoint
- Harmonization of policies

* |nstance classification:

- Policy exploration, disclosure, and
distribution

KAO0S Architecture

N

Generic Elements of the Framework

L

m Set of pre-defined ontologies defining concepts
for: policies, actions, actors, groups, and entities

= Generic functionality includes:

+ Specifying policies using the KAoS Policy Admin Tool
(KPAT)

¢ Storing, deconflicting, and querying through the
Directory Service

+ Distribution of policies to Guards
+ Implementation of policies through Enforcers
+ Policy disclosure through Policy Query Interface

KAoS Directory Service

N

L

Keeps information about the domains
structure of the environment,

Contains ontological definitions of the
platform and active applications

Allows actors to register their:
- Name and identities

- Membership in domains
- Ontologically specified types and capabilities

Keeps state of policies

Keeps ontological description of current
situation by collecting history of events and
monitoring states

KA0S Guard

KAoS DS
meets the <50
app”cation é [Policy Snapshot }
® Policy checking traverses the J 7
policy database in policy —5 4~

priority order and checks to

see whether the AID is in
the range of actions

controlled by any policy
= The range of actions

attribute is derived from
an action class

= Role-value map | classifier(s)

Filler(s) I
controlled by the policy

. AN - N
relations, defining Obligation Redirecto. %,
aspects of policy and Monitor Mo, % lns-tantiator(s)l
O~

*9}9 ‘sauojisoday *‘éaseqezea apIsino

context, are checked as N
well KAoS Guard | i 5l
o Policy Checking Interface
® Extensibility of Guard N
behaV|Or /ax@/e 3 I:si::;::e
,..Q’\@?/ Description

Application

Pollcy Distribution

f‘\

Every actor in the system is associated with a Guard,

Guard receives policy update from the Directory
Service based on the controlled by itself:

+ actors ids,

+ roles/classes of actors,

+ actions classes

Before policy leaves Directory Service it Is:

+ transformed from OWL to semi-table format

+ information about instances in the classes are cached

+ Information about relevant class and properties relations are

cached

Policy is stored in the Guard Policylnformation
database, according to its priority in order to facilitate
efficient policy queries.

N

Application-Specific Extensions

m Specific ontologies describing new policies,
actions, actors, groups and entities
= Framework Plug-ins:

+ Policy Template and Custom Action Property
editors

+ Enforcers governing actions

+ Instance Classifiers to determine if a given
Instance is in the scope of the given class

» Plug-ins are linked with the framework by:
+ registration in an appropriate Factory
+ together with the plug-in ontology description

= Guard itself is not application specific; its
extensions are.

N

Policy Enforcement Approaches

L

= Authentication policy enforcement
= JAAS-based access control enforcement
= Aroma-based resource control enforcement
= Action (higher semantic) specific enforcement:

= Enforce policies that cannot be enforced at VM-level

= Obligation policy enforcement

= Active monitors watch for satisfaction of obligations
and, If necessary, take sanctions after violations

= Enablers assist in the performance of obligations

= Easy integration with Semantic Web Services
* they use declarative execution mechanism

N

Enforcer Management

m Enforcer class name Is registered Iin the
Enforcer Factory

s Assoclated with the names of the action

classes It can

= Registry Is eit
available on t

enforce policy on

ner stored in a Jar file or
ne network (in the future)

s WWhen needeo

enforcer created through the

Java Reflection mechanism

Enforcer Implementation

N

s Implement simple Enforcer interface:
+ getName(),

+ getOntologicalAttributes() - get names of the
action classes intercepted by this enforcer on which
policies can be enforced,

+ setEnabledStatus()/getEnabledStatus()/ — manage
status

= Implement enforcer unique action filter and
the init method, which will insert the
monitoring functionality into the actor VM,

= Use Policy Disclosure interface
m Register it into Enforcer Factory database.

Example of Legacy System

Enforcer

N

KAoSActor
Interface

Legacy System
Interface

delegates
v

Legacy System

KAoSActor

Enforcer
Interface

Enforcerimpl

(onty pariﬂarw)

See:
http://ontology.ihmc.us/WorkArea/KAoS/doc/csi-

api/kaos/core/csi/usecase/legacy/package-
summary.html

delegales
E
n
f
intercept Legacy System
o invoke servicge Client
<
r &, KAoSActor
c 3,
2.
e %
r @
%,
%)
LegacySystem
specific PolicyChecking
PolicyChecking

Enforcers for Basic and Derived
Actions

N
\J

" The systems needs enforcers for each of its basic
action in order to be fully policy enabled

Usually all the system interfaces have to be wrapped into
enforcers (see previous slide)

= The derived actions are usually created to enhanced
policy manager experience

They conceptualized some specific aspect of the system
activity (gives it a distinct name)

KAO0S automatically recognizes relations between derived
and basic actions; not need for special enforcer for derived
actions
The are created from basic actions using OWL syntax:

= Inheritance from basic action (supported)

= Restrictions on basic action properties (in testing)

= Unions and intersections of basic actions (planned support)

= OWL-S extensions for process sequences (not supported yet)

Classifiers

N

m Its role Is to classify if a particular aspect of
the policy controlled action is fulfill by a
corresponding value in the tested action

+ For instance; test if a transmitted
document/video/etc. is of particular type

= It IS a Guard extension

= Can be use to handle specialized algorithm,
legacy code and scalabllity issues

s Method c/assify - checks if the instance from
the provided description is of the indicated
type

m Classifiers Factory associates classes of
classifiers with names of action properties

N

History Monitors (Loggers)

= Its role is to collect records of desired
actions happening in the system
+ For instance of failed logging actions

m It Is a Guard extension

= Can be plugged to existing system logging
mechanism

s Method zestHistory - checks if the specified
number of occurrence of the specified
action is recorded in the logger

= HistoryMonitor Factory associates classes of
HistoryMonitors with names of action
classes they collects

KPAT

KA0S Policy Administration Tool (KPAT) Hides
the Complexity of OWL for Policy Specification

/4
B T —_LiBd & Dynamically
Z:::cgi :T_U::ditor Configuration Falicy Disclosure Ontology Query | Guan d Management | Policy Editor Obt aln S II St O _I:
; selections from
o the ontology
repository based
Ermerm— on the current
context.
o @ Graphical
sl template editor
allows creation of
simplified GUIs
* € Cmap interface
(COE) available
for ontology

definition

Graphical Tools for Generation of Policy: KPAT

Hypertext Policy Editor anc

= KPAT][- KAoS Policy Administration Tool v2.0

M=)

) _F\.;t.or Roles ,IE_C.I@_ssg_s_ Palicies

Doméins_ and Actors |
Palicy Disclosure Orkola

Configuration Guard Management

_Po.liu;}f _Témpi_;a-tes -

Meww Policy Wizard

Policy ID: urn:kKaoS#policy-0bdf34df-0119-0000-3000-0000aabbccdd
Policy Mame: | RobotMovementRestriction
Description: | Robots are Forbidden ko move o restricted areas
Prioriky: 1

Condition

This policy always applies

Policy Stakement

Fuobot is not authorized to perform Movernent which bhas attributes:
any place values are of type Restrictedsrea

Ontolooy Yiew
Policy Editor |

Palicy Changes

|

Policy Wizard

£ New Policy Wizard

Select the type of the new policy:
(7 Policy suthorizing an action

(& Bolicy Farbidding an actior

' Back

O = New Policy Wizard
&) . : et
Select the type of actor whose actions are forbidden by this policy:
() Individual Actar
(%) Class { Rale of Actors
Select Ha o
Pioneer| 2 New Policy Wizard
Fioneer.
};';E: Select the type of action forbidden by this policy:
Robat |Mowement |2 E
Fotomol| E T e S
Saftwar Select the action attributes which are relevant to this policy:
TEGT [TreTmoEr O
uay || (L] obiettCl &) New Policy Wizard
[] part
E ;:;g:m Select the value(s) of the place attribute:
E‘ place . © Al values = New Palicy Wizard
reques!
D status (%) Ak least one value
] status must be
gm (%) of the following type or role
0 in the Following set of instan) Select any conditions which must be satisfied in order for this
;;Z;:Pg\e 1 policy to apply:
gssttnctEedﬁ_«rsa ; [History condition - when an action has been performed & number of times
ystemEnvironment
UnknownPhysicalPlace
WirtualMachine [] state condition - when the system has a certain state

(@][0]

l € conce

® Alternative user interfaces for policy
creation:

= Single hypertext editor
= Policy Wizard

& Users choice lists are created from
ontology based on the context

Managing Policies

1

|£ | KPAT I[- KAOS Policy Administration Tool v2.0 [E=SRIEE 5
| Policy Templates | Ontology View | Configuration | Folicy Disclosure | Ontology Query | Guard Management inistration

| Domains and Actors Actor Roles / Classes Paolicies

Policies
Showing policies for all actors, all actions

Palicy Information

Name: TurkeyChbligation

MName Priority

-[E] Bobs Palicy 1
E] IragPalicy 1
E PerrﬂlssmnTDPerfoerOSCorrEl
- TurkeyObligation

~[E] TurkeyPalicy 1

I1d: policy-b036a1df-0116-0000-8000-0000aabbecdd
Actor: RadioControlagent

prioriy: 1 (& J Y]
In Force:
Description: agent transmitting in Turkey is obligated to perform QOSCarrectiveAction

Policy Staterment
This palicy always applies
RadioControlagent is obligated to start performing RadioQosCorrectiveAction which has any atributes
after RadioContraolagent finishes performing RadioTransmissionAction which has atiributes:
all hasTransmissionLocation values are of type Locationnside TurkeyRfZonel
all hasTransmissionPower values are within the range 0.0 < ¥ < 93.0
all performedBy values equal the Contral action's performedBy values

Wiew policy representation

Paolicy Analysis

J Policy

. Conflicting

. Making Redundant
. Overlapped By

(drag and drop to adjust priority
or to create policy sets)

[Add Policy Set I [Save FPaolicies in OWL

[Edit] I Remave] [Save] I Load] [Save Policy in OWL] { Ferform Analysis]

Policy Changes

o

& Policy hypertext
descriptions are
automatically displayed

@ Policies are rank
ordered by importance

@ The order can be
adjusted by using the
arrow buttons or
dragging and dropping
within the list.

& The rankings of other
policies will adjust to
accommodate the new
position

@ Policies can be filtered
according to their actor
or action

Additional KAoS Functionality
Overview

N

L

= KAoS functionality is accessed by:

- APls to Services through CSI
(Common Services Interface) and
additional platform specific layers

- Graphical interface - KPAT

CSI: Transport Service

Common Services Interface

Transport provides an abstraction to the
underlying message passing mechanism, a
simple way to bind to a given transport and
send messages allowing applications to tailor
their own communication protocol.

[message

CSI: Functional Registration and
Matching Service

N

L

Platform 1

Application 1

Common Services Interface

Registration provides the ability to publish an
entities capabilities and status, update both
the capabilities and status.

Transport

Platform 2

Registration

Request

Query
Subscribe

Constrain (policy)

Application 2

| have a
camera.

CSI: Request Service

Common Services Interface

Request allows one entity to send a request
to another typically to execute some action.
The actions are specified in the ontology as
are the properties for action.

Take a
picture of
me.

{CSI: Query Service

Common Services Interface

Query allows an entity to retrieve information
about another entity. The allowable queries
are specified in the ontology, as well as the
properties associated with each query. This
Is a “pull” method.

What is your
current
position? | am at
(32.41N,
87.26W).

CSI: Subscribe Service

N

L

Platform 1

Application 1

Common Services Interface

Subscribe allows an entity to register to as
an observer of anything defined as
observable. The observable and its
properties are described in the ontology.
This is a “push” method.

Transport

Registration

Request

Query

Platform 2

Subscribe

Constrain (policy)

Application 2

Let me know
if your
position Now | am
changes at (2,4)

CSI: Constrain (policy) Service

N

L

Platform 1

Application 1

Common Services Interface

Policies allow constraints to be applied to an
entity external to the entity itself. They can
be dynamically modified to adjust the bounds
on a particular entity based on the current
context.

Transport

Registration

Request

Query
Subscribe

Platform 2

Application 2

Constrain (policy)

Human can view constraint

Robot complies with constraint

KAOS API

Interface to KAoS Policy System

N

= \Who uses this interface:

= Actor which wants to learn about policies applicable to
Its current situation

= Enforcer which intercepted the actor attempt to
perform a given action and will enforce policies on it
= Makes Transparent complexity of policy reasoning

= Requires description of the Action Instance:
= Context — includes subject ID or its credentials
= Ontology-base Action class name

= List of ontology-based names of the action context
elements and their values for this action

N

KAO0S CSI API data structure

The Action Instance Description (AlID) Is the
key data.

Currently three methods to create It:
- By separate calls to the AID interface; adding

action properties one be one

- By passing a hash map to the constructor
containing property name and value mapping

- By passing an OWL description of the instance
In a string

A user can use any one (or a combination of)
the Interface options.

Example of

N

Action Instance Description

m Actor invokes an operation with properties

PropertyName

Example Value

Subject (Actorld)

IntellOfficer32

ActionClassName(s)

ActionConcepts.RetriveDocument

ActionConcepts.
_documentClassification

TopSecrete

ActionConcepts.
_documentSubject _

NATOACctionInAsia

Basic CSI Policy Methods

N

= NameSpace: kaos.core.csi.policy

= checkPermissionkFor
(ActionlnstanceDescription aid)

- Checks if the given action is permitted according to
the current set of policies.

= getObligationsForTriggerCondition
(ActionlnstanceDescription triggerAlD)

- Based on the specified trigger condition described
by an ActionlnstanceDescription, select all
matching obligations and return them as
ActionlnstanceDescriptions.

' KAOS Spatial Reasoning
Component (Ksparc)

Ksparc features

N

®

®

Integrated with KAoS Services
Framework

Allows to querying for relative and
absolute spatial relations among people,
objects, and robots

Calculates absolute values of the
relations: distance, angles, etc

Consist of set of local spatial reasoners
and a global spatial reasoner
coordinating the reasoning

N

Ksparc usage

#® Support spatial elements in robot
human dialogs

#Allows for both absolute and egocentric
references and recalculation of spatial
point of reference

#®Allows to check policies that contain
spatial information

Example reasoning result

N
\J

<% Remote Robot Client =JOOES
Robots Observables i

Robot Selection Panel Image Viewer Implemented Interfaces

Ivan Capture Image StartVideo |[| save [SpatiaiReasoningTest | FindClearLane | VideoFeed | Events |
| Sonar [FAUTest | MobileRobot | CommRelay | TeamViPTest |

Add Ohject Delete
add: Name Type Heading
dog3 fillcircle ‘ ‘045 ‘

Get info for obhject:

Overhead Yiew Teleop Control Panel X 75 v ’7 ’7
25m ® mobile base ' ptz camera [| auto update
' ' n 100 | Ron 0o pitch Yaw [45.0
”
./ ./ ' In relation to subject:

2 o]
Yaw @

v [_] In Front

| 26m 2 [v] Left OF [] Right Of
-25m om 25m
C {} 1 ~
: : : — — Enable JoyStick L bk
[] plot movement display GPS | re-center
D llion i O Al s A A e A e e e e e e e e e — e —— |

The relations are calculated between the centrally located Robot and the gray object.

Further information:

http.//ontoloqy.ihmc.us

Joint Battlespace Infosphere

KAOS Policies for JBI Access

Control

& Enhancement of Air Force Research Laboratory combat
Information management system together with ISX in
the J-DASP project

& Access control to information and services limited

€ KAo0S allows for extension of the existing JBI access
control triple to full semantic description of the
controlled situation

@ Ontology vocabulary allow for declarative specification of
policy and applicability based on context

€ Quality of Service policies supporting needs of tactical
environment

N

UBN fof
ec-,s'.l)ﬂ

l' PubiSub \{5“
Service m
&

~]
ac;’-“

KAoS 2 Synchronize
Directory Service| o;
..’8&?_6
e

2ot

c\%
o
q‘-‘*eﬂ

UV

Communities of Interest

AN

COIl Concepts

N
\J

& Assets and partnerships situated in the context of the
mission
& Specific producers, consumers, data product and policies

& Many types of information must be captured in an easy-
to-understand form:
= Information needs — COI scope,
types of information
types of consumers
Infospace managers
applications used by consumers
degree of information integration
iInformation security activities
consensus set of vocabulary terms and definitions

& Allows partners to determine whether the aggregated
assets are adequate for performing the mission

KSupport for the COI Lifecycle

Exploration

= Defining COI goals, consumers and producers of
Information, semantics of information, policies, etc.

Implementation

= Grounding to the operating platform; mapping to the
JBI infrastructure

s Definition of needed semantic transformations

@ Operations

= Monitoring community dynamics, relationships among
participants, maintaining the community

Requirements-Features Overview

\J COI Lifecycle Needs _ _ Solutions

COI-Tool Dataflow

5
N
Ol Assets and Data
DoD Metadata Resources
Previous COIl Data =

COI/KA0S Ontologies
Web Search =
WordNet col

Configuration

Template Concrete COI
Configuration

Operational COI: :
Participants Status, Relations, Sema".t'c Producers and
Policy Fulfillment Translations Consumers Stubs

Data Product

Metainformation _,
Policies
Ol Services or Connectors "/
to Existing Systems

KA0oS-CMap-JBI1 Integration
for COIl Infospaces

 —

IMS personnal

observe

IHMC [I'lllpTDﬁhg a

e / J KAoS |_

b
G .- Directory Service
¥ VISUQH =
Ze CO| résourceg Registration Service Ontology Service
their Gntoj'ogy and Query Service Matching Service
IS

o
--I

intercept

use

Community of Interest

use

intercept

egister/invite - -
Brokerage
Service
-
Query
Service

registeninvite

v

registey/invite

Query
i Service
JEI

becribe

Create the New METOC COI

gl context
¢l context

Open

Close

Yiew Map of Cmaps
Export folder as ontology

Cut

Copy
Faste

Rename

Delets

Shortout

Add to Favorites
Add to My Places

¢y Intellige
#I% learning
#T% literal

Adld

Export Folder as Web Page...

Impart

#I Palicy
#Is Self Org

Validate & Fix Links ...
Publish...

Search

Resource Tracker

Arrange Icons By

Showe Yersion History...

Permissions...
Properties...

Implemented COL
Monitor Implemented COI
Cmap

Folder...

Discussion Thread. ..
Soup..,

File Edit Tools MWfindow Help

My Craps

—

=423 Abstract COIs
#--[[] templates

gl COI

-¢s COTAction
gl COTActor
¢4 COIData
#-[[] c2csi
--[E Cache
—-4=% Domnain Specific COLs
5453 METOC

ifTy METOCCOL
¢l METOCCOLACkion
#y METCWZCOTACkor
#I METC_COIDaka
------ [3 tmplemented Cols

Ge

L

@

-] Other

- [2] Policy

#-[0] templates

------ gl conkext-k

------ ¢l conkext-k - Ontology CMap

icons only

------ ¢l InteligenceAccessExamplesctionsModel

Graphically Define Ontology of

Weather Concepts and Products

4l
\[J

% METOCCOIData - Ontology Cmap

File Edit Format Collaborate Tools WWindow Help

@ 5 21100
|~
[MissionControlForecast (MCF)] [PlainLanguageForeca sr.] [Weathe rSensnrRepcrt]
= : \ / / s
-] a8

hasForecastElements hasCoveredArea Sig T o
(ObjectProperty) ({ObjectProperty) (Objec
[Fnrecale!ement] [place:Area] [WeatherForecast] [nl:infcrmatinnobjecl.] [WeatherSens

4 |
hasWeatherPrediction L re - is de
(ObjectProperty) a

[weather: Weather] [time:Pmperinter\ralThlng] [ni: {nformatia-nobjectJ

WeatherObservation

are

[WeatherAdvisory (WA)]

[ni :lnformati'nnObject] [nl:lnfcrmatiunf)bject]

[l m

P

[weather:WindPara meter[

View as \Web Page

http: jfnorma.ibme . us: 8082/ servletfSEReadResourceServlet Prid=1 165296213152 _1891451063_1506&partMame=htmltext

Defined Namespaces

This Semantic Space

QMame

LIRL
http:ffnorma.ibme, us: 8082 /sl

default http:flocalhostidef aulta

nl http: ffonkalogy.ihme,usf COIfC
owl htbps s, w3, org 2002 /07 ic
place http:/fontology.ihme.us/Spatiz
rdf hitkp: f feawn w3, 0rg/ 19990212
rdfs hitkp:f frawn w3, org /2000701 ir
kinne: https ffva.isi, eduf~panidaml
weather http:ffnorma.ibme, us: 3082 /e
xosd http: /e w3, org /2001 XML
QMame: | weather

Full URI: | http:ffnorma.ibme, us: 8082 serviet SEReadResourceServlet

[Import ko COE Map]

[Accept Changes][Femove

Entities defined in selected ontalogy

o

-] Classes

Individuals

4 Datatype Properties

ot hasUnit

- # hasWalue

-4 Object Properties

-4 hasAtmospherParameter
- @ hasPrecipationIntensity
@ hasPrecipitationType
- hasPrecitipation

- haswindParameter

- haswind3tate

and
XML Schemas for Each Partner

¥ KoreahirForceMETOCCOIActor - Ontology Cmap =/
de Eat Format Colsborate Toals Window Help
PeEr #m L Generate Bootstrap Files.. !

I -~
| Validate & Fix Links ... HanForacastConsumer |
nl:WaahesForecast] r I

& | Suggest b
|| annotate...

:E'l'l‘ca‘.neanm:nsttnrmrncr]

e Eon s lant map

| reare LontEr] = =1=1a}
15 a | ~ledlz AU E0 Uiy g e

| ! AL AT
=1 nliWeatherDataPraduces
.-"'"

Create Decloned Equivalent Cmap

Merge Modes... | :
)| s
| Mested Mode ¥ n1'W!atherFornrastCons-umer]
Call DME |

g T

| Presentation Builder MARFORKorea 1 WeatherDatabroduce |
L 1L AviationFoed . ' ’

Crnap Recarder R
[n1:weamerDaacalieror |4 Dictionary and Thesaurus (english only) ...

I

1 nl:WestharFarecastConsumer
o Spelling...)
n].-weem&-Fﬁrecastcum:.ng Search " FACFLIT-HEEE
nl:WealhErFurkaﬁ'ﬂli____.Cumparg_h.:!.lgmip_. _ _
| [nt:'ﬂfeathwfure:usttummer_]
\ /‘ NavalCentralMETOCHawall
P AL

HavalOceanograhicOfficeStennisSpaceCenter 54

I 3

i Seamless and Secure Federation
Among Highly- and Loosely-
Connected Infospaces

AN

Vision for Federation

N

& Sharing of MIOs across infospaces
m Seamless subscriptions and queries across infospaces
= Transparency to CAPI clients
= Controlled via policies — not unrestricted
= ldentity and integrity of individual infospaces preserved

& Efficiency when handling subscriptions and queries
m Criteria: Latency, Bandwidth, Storage, Availability

@ Dynamic translation of compatible MIOs
m Different schemas
m Restrictions on MIO content sharing
= Bandwidth/efficiency requirements

N

Project Goals

#® Interface (API) Design for Federation

#® Enable Federation Between Infospaces
= Enterprise — Enterprise
= Tactical — Tactical

= Enterprise — Tactical
= Not limited to just two instances

@ Control Federation Through Policies and
Contracts

Optimize Federation via Adaptive Caching and
Replication

@® Work with Multiple, Existing Implementations

Overall Architecture

N

W Federateo

Local Federation Proxy
Information (Connector)
Space Federation Proxy

(Connector)

Federation Service (Handles Redirection)

A

A
/ 1 / \
Publisher Data Consumer Control

Publisher Control (Access Control, ; g
(Registration,

(Consumer Data)

(Reglstratlon, Information Preprocessing, Subscription, Search
Advertisement, QoS Enforcement, and Quer
Feedback, RFIs) Information Re uests))/ Transformation
Transformation) q Components

(Policy-based)

APt ||
\/

Producer Producer

\ Quality of Service
Management

CA%

Consumer I Consumer I

Runtime Pgase

_6 Infosphere O
L Manger Federate
Infosphere Infosphere Federate
(IMS/JBI) COE & Coy,, Manger Infosphere
HCiawas S (IMS/JBI)
o) A et
2/8 - Information | 4
3 COE-»E Space o,
= Ne
P\
Federa_tion S
Service _ Renegotated _ (* Federation
= 1 Service

Error Recovery

L

-

Terminate

-
|

il
-

(2) 101 wimay

Request subscribe/query metaschema MOI(s)(3)
/ Forward MIO(s) (6) \

UV

GRASP - Generic, Risk-Adaptive,
Semantically-rich Policy Framework

Project with ISX
for AFRL

AN

GRASP Goals

N

* Provide security administrators with enough
iInformation to explicitly express who gets access to
what information under varying operating conditions

@ Grant assurances of secure enforcement through
mathematically-grounded analysis, runtime
simulation, and clear visualization of policy

@ Maintaining awareness of the security of the system
In the face of malicious attack is of the utmost
Importance, and GRASP provides the capabilities to
stay aware of the weaknesses of the system and stay
In control of the policies in force in the case of attack

N

GRASP Framework

Analyze / Design Ph I, Existing, Utilize in Ph |
Implement Post Ph I

Intuitive Policy Creation

Dynamic Policy

Policy Versioning Enforcement

Policy Visualization
and Automated Policy

Risk Awareness Adaptation

Policy Simulation

Automated Logical
Policy Analysis

Policy Provenance

Analyze Ph |, Implement Ph Il

System Logging
Policy Decision Logging and

Risk Analysis

Kaa: KAoS Adjustable Autonomy

N
\J

& Adjustable autonomy

= Ability to impose and modify constraints that affect the
range of actions an agent is capable of performing or is
permitted or required to perform

= Intent of adjustment is to lead to measurably better overall
performance of the human-agent team in a given context

€ Support for adjustable autonomy in KAoS

= Context-based policy adaptation

+ Dynamically adjust policies to enable quick response to threats
and optimization of overall system performance

= Considers the utility of various choices for autonomy
adjustment

+ Reasoning based on dynamically built decision network

Autonomy Adjustment for

N

Situation
awareness

t

Get related
policies

Common
Services
Interface

t

KAO0S
Directory
Service

\

Modify
policies

h 4

Analyze
policies

if related

A 4

A

Decide
autonomy
adjustment

» Decision-theoretic algorithm based on

Observed Situation in the World

...

i « Check the

. relationship
between each
policy and the

observed event :

...

influence-diagram

Context-based Influence

Diagram

N

& Example context

authorization)

Decision: Status Quo Vs.

= Policy: Deny intel-doc access to NATO (negative

TO joint anti-terrorism mission in

Permission to NATO

Policy-dependent choices

Domain-dependent actions/resources

completeness

risk

cost
Situation-specific attributes

+¢» Decision network construction is driven
by domain-independent knowledge

¢ The probability of each node state and
its valuation is also context-dependent

Ontology-based Declarative

N

Knowledge for Kaa

& Limitation of the current decision model
= Most knowledge used to build a decision network is static
= Difficult to handle context-specific dynamic information
s Complicated transition to a new domain

€ Solution approach

m Represented the information required for Kaa declaratively
In the ontology

+ Computational knowledge: node probability and
valuation

+ Logical knowledge: causal relationship between nodes
= Provided KPAT-like user interface to define the knowledge

= Developed necessary mechanisms to dynamically construct
Influence diagrams

+ For a real world problem, the diagram can be very
complex with multi-layers

