
KAoS Tutorial

Andrzej Uszok
auszok@ihmc.us

Jeffrey Bradshaw
jbradshaw@ihmc.us

KAoS Policy Service Motivations
Allow for policies which are human expressible but
machine enforceable

permit effortless extension of policy vocabulary to suite
domain needs and understanding of the domain only
limited by the mapping to the business logic of the
application
present user-friendly interface to the policy system

Provide sophisticated policy query, analysis and explanation
mechanisms
Support for interoperability by using ontology and standards
for the Semantic Web
Support extendable framework architecture allowing for easy
extension, customization and integration of the policy service
with diverse target application environments
Provide policy distribution and decision infrastructure, which
is highly-efficient and tolerant to disconnections

KAoS Architecture
Human interface: A hypertext-like
graphical interface for policy
specification in the form of natural
English sentences. The vocabulary
is automatically provided from
ontology.
Policy Management representation:
Used to encode and manage policy-
related information in OWL. Inside
DS it is used for policy analysis and
deconfliction.
Policy Decision and Enforcement
representation: KAoS automatically
“compiles” OWL policies to an
efficient lookup format that
provides the grounding of abstract
ontology terms, connecting them to
the instances in the runtime
environment and to other policy-
related information. These polices are
sent from DS to Guards, which serve
as local policy decision points.

KAoS Ontology and Policy
Semantics

Use of Ontology in KAoS
Descriptions of actors, actions and situations at
different levels of abstraction
Possibility to dynamically calculate relations
among policy, platform entities, and other
policies based on concepts ontology relations
Dynamic extension of the service framework by
specifying platform ontology and linking it with
the generic KAoS ontology
Extension of the KAoS framework itself by
adding new ontologically-described components

KAoS Ontology Management
Ontologies expressed in OWL
KAoS defines core set of ontologies;

loaded during its bootstrap
Ontology specific for the application extend
core ontology;

loaded by KAoS after core ontologies
External tools used to create these
ontologies:

Protégé, SWOOP and validatores from daml.org
KAoS allows to extend these ontologies by
creating instances and subclasses
When Internet connection is not available the
KAoS ontology proxy can be used

KAoS Core Ontology
Web Site: ontology.ihmc.us contains OWL ontologies of:

Entity
Attribute
Group
Actor
Situation
Condition
Action
ActionStatus
ActionHistory
Place
Message
Policy

Plus many application specific ontologies extending the core
ones

KAoS Policies
Policy constrains/amends user/system activity/state
Main types of supported policies:

Authorization – Allow or Forbid actions
Obligation – Obliged actions or Waive obligation

Associated with Conditions activating the obligation

Includes a description (class) of the controlled
situation

Constitutes a test (template) for the applicability of the policy
Contain definition of action Subject – extension of traditional
policy Role

OWL vocabularies allows for declarative definition of
policy applicability
Policy posses a priority, which enables it to take
precedence above contradicting ones

KAoS Policy Semantic

O
W

L Policy Syntax
Exam

ple

<?xml version="1.0" ?>
<!DOCTYPE P1 [

<!ENTITY policy "http://ontology.ihmc.us/Policy.owl#" >
<!ENTITY action "http://ontology.ihmc.us/Action.owl#" >
<!ENTITY domains "http://ontology.ihmc.us/ExamplePolicy/Domains.owl#" >

]>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.owl.org/2001/03/owl+oil#"
xmlns:policy="http://ontology.ihmc.us/Policy.owl#"

>
<owl:Ontology rdf:about="">

<owl:versionInfo>$ http://ontology.ihmc.us/ExamplePolicy/ACP1.owl $</owl:versionInfo>
</owl:Ontology>

<owl:Class rdf:ID="OutsiteArabelloCommunicationAction">
<owl:intersectionOf rdf:parseType="owl:collection">

<owl:Class rdf:about="&action;NonEncryptedCommunicationAction" />
<owl:Restriction>

<owl:onProperty rdf:resource="&action;#performedBy" />
<owl:toClass rdf:resource="&domains;MembersOfDomainArabello-HQ" />

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="&action;#hasDestination" />
<owl:toClass rdf:resource="&domains;notMembersOfDomainArabello-HQ" />

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

<policy:NegAuthorizationPolicy rdf:ID="ArabelloCommunicationPolicy1">
<policy:controls rdf:resource="#OutsiteArabelloCommunicationAction " />
<policy:hasEnforcementSite rdf:resource="&policy;ActorSite" />
<policy:hasPriority>10</policy:hasPriority>
<policy:hasUpdateTimeStamp>446744445544</policy:hasUpdateTimeStamp>

</policy:NegAuthorizationPolicy>

Policy Example:
Any communication outside the Arabello domain, which is not encrypted is forbidden.

Beyond Description Logic for
Policy Representation

Originally KAoS used only OWL-DL (initially DAML)
Limited in situations when needed to define policies in
which one element of an action’s context depended on
the value of another part of the current context:

Example – Loop Communication Action
Relation to the current location, time, other aspect of the
current action instance context
Relation between Trigger Action and Obliged Action

These requirements can be fulfill by role-value-map
semantics (see page 94 in The Description Logic
Handbook)

maps allow policy to express equality or containment of values
that has been reached through two chains of instance
properties

KAoS was equipped with role-value-map semantics to
defined policy actions when necessary

Example of policies needing
role-value-map semantic

Service Provider B cannot report back on
results of operations to parties other than
those which have provided the data, unless
the data provider has authorized another
party.

Spatial Ontology and Policies

Spatial semantics is needed for policies
dealing with physical objects and theirs
relations: robots, radios,
humans/teams, vehicles, etc.
KAoS Spatial Reasoning Component
(Ksparc)

Allows to querying for relative and
absolute spatial relations among
people, objects, and robots
Calculates absolute values of the
relations: distance, angles, etc
Consist of set of local spatial
reasoner (integrated with KAoS
Guards) and a global spatial
reasoner (integrated with KAoS DS)
coordinating the reasoning

Supported Spatial relation
threeDimensionsSpatialProperty

above
below
higher
lower

referencedSpatialProperty
furtherToTheLeft
furtherToTheRight
higher
lower
between

orientationSpatialProperty
inFront
behind
toTheLeft
toTheRight
above
below
towards
backwards
currentlySee
furtherToTheLeft
furtherToTheRight
higher
lower

inside
outside
canSee

currentlySee

Inferencing Engine Integration
Used in KAoS to reason about ontological
relations and policies
Stanford JTP – Java Theory Prover

First-order logic reasoning:
With support for description logic reasoning over OWL
defined Knowledge Bases

Support for non-monotonic reasoning:
Untell operation

Framework architecture allowing for adding new
specialized sub-reasoners

Currently integrating with Pellet through the
developed generic reasoner layer

Isolates from specific reasoner

KAoS Policy Interface
Makes Transparent complexity of policy reasoning
Its input is the description of a tested situation
Allow to investigate how policies affect actions:

Test Permission – verifies authorization to perform a
given action
Get Obligations – gets a list of actions obliged in the given
situation
Get Configuration – gets possible values for a questioned
action property, which will make the specified action authorized
Make Compliant – transform the action an actor tries to
perform from a policy forbidden to a closed one which is policy
permitted (in progress)

Mechanism to overwrite policy in certain situation by
human or adjustable autonomy system

Available as Java API or through remote network calls

Policy Analyses
Human needs to know policy relations
and correct those resulting in incorrect
or unintended policy decisions
Given policy can be overlap by some
higher priority policy (or by a sum of
such policies)

If fully overlap then policy is irrelevant
Policy can overlap with the same
priority policy resulting in policy
conflict

Example of KAoS Reasoning:
Resolving Three Types of Policy Conflicts

Conflict analysis and other powerful forms of reasoning become more
critical when policies and situations are changing rapidly in dynamic and
tactical environments

Permitted
(A+)

Forbidden
(A-)

Not Required
(O-)

Required
(O+)

A-/O+

O-/O+

A+/A-Authorization

Obligation

Notification about policy conflict

Remove Policy: one of the overlapping policies can be completely
removed;
Change Priority: priorities of the policies can be modify so they either
do not conflict or they alter the precedence relation
Harmonize Policy: the controlled action of the selected overlapping
policy can be modified using an automatic harmonization algorithm to
eliminate their overlap
Split Policy: the controlled action of the selected overlapping policy can
be automatically split into two parts: one part that overlaps with the
other policy and the other which does not. Then the priorities of these
parts can be modified independently. The splitting algorithm is similar
to the harmonization and is currently in development.

Description logic reasoning

Subsumption-based reasoning used for
determination of disjointness:

Finding policy conflicts by determining if two
classes of controlled actions are disjoint
Harmonization of policies

Instance classification:
Policy exploration, disclosure, and
distribution

KAoS Architecture

Generic Elements of the Framework

Set of pre-defined ontologies defining concepts
for: policies, actions, actors, groups, and entities
Generic functionality includes:

Specifying policies using the KAoS Policy Admin Tool
(KPAT)
Storing, deconflicting, and querying through the
Directory Service
Distribution of policies to Guards
Implementation of policies through Enforcers
Policy disclosure through Policy Query Interface

KAoS Directory Service
Keeps information about the domains
structure of the environment,
Contains ontological definitions of the
platform and active applications
Allows actors to register their:

Name and identities
Membership in domains
Ontologically specified types and capabilities

Keeps state of policies
Keeps ontological description of current
situation by collecting history of events and
monitoring states

KAoS Guard
Where KAoS meets the
application
Policy checking traverses the
policy database in policy
priority order and checks to
see whether the AID is in
the range of actions
controlled by any policy

The range of actions
attribute is derived from
an action class
controlled by the policy
Role-value map
relations, defining
aspects of policy
context, are checked as
well

Extensibility of Guard
behavior

Policy Distribution
Every actor in the system is associated with a Guard,
Guard receives policy update from the Directory
Service based on the controlled by itself:

actors ids,
roles/classes of actors,
actions classes

Before policy leaves Directory Service it is:
transformed from OWL to semi-table format
information about instances in the classes are cached
Information about relevant class and properties relations are
cached

Policy is stored in the Guard PolicyInformation
database, according to its priority in order to facilitate
efficient policy queries.

Application-Specific Extensions
Specific ontologies describing new policies,
actions, actors, groups and entities
Framework Plug-ins:

Policy Template and Custom Action Property
editors
Enforcers governing actions
Instance Classifiers to determine if a given
instance is in the scope of the given class

Plug-ins are linked with the framework by:
registration in an appropriate Factory
together with the plug-in ontology description

Guard itself is not application specific; its
extensions are.

Policy Enforcement Approaches
Authentication policy enforcement

JAAS-based access control enforcement
Aroma-based resource control enforcement
Action (higher semantic) specific enforcement:

Enforce policies that cannot be enforced at VM-level

Obligation policy enforcement
Active monitors watch for satisfaction of obligations
and, if necessary, take sanctions after violations
Enablers assist in the performance of obligations

Easy integration with Semantic Web Services
they use declarative execution mechanism

Enforcer Management
Enforcer class name is registered in the
Enforcer Factory
Associated with the names of the action
classes it can enforce policy on
Registry is either stored in a Jar file or
available on the network (in the future)
When needed enforcer created through the
Java Reflection mechanism

Enforcer Implementation
Implement simple Enforcer interface:

getName(),
getOntologicalAttributes() - get names of the
action classes intercepted by this enforcer on which
policies can be enforced,
setEnabledStatus()/getEnabledStatus()/ – manage
status

Implement enforcer unique action filter and
the init method, which will insert the
monitoring functionality into the actor VM,
Use Policy Disclosure interface
Register it into Enforcer Factory database.

Example of Legacy System
Enforcer

See:
http://ontology.ihmc.us/WorkArea/KAoS/doc/csi-
api/kaos/core/csi/usecase/legacy/package-
summary.html

Enforcers for Basic and Derived
Actions

The systems needs enforcers for each of its basic
action in order to be fully policy enabled

Usually all the system interfaces have to be wrapped into
enforcers (see previous slide)

The derived actions are usually created to enhanced
policy manager experience

They conceptualized some specific aspect of the system
activity (gives it a distinct name)
KAoS automatically recognizes relations between derived
and basic actions; not need for special enforcer for derived
actions
The are created from basic actions using OWL syntax:

Inheritance from basic action (supported)
Restrictions on basic action properties (in testing)
Unions and intersections of basic actions (planned support)
OWL-S extensions for process sequences (not supported yet)

Classifiers
Its role is to classify if a particular aspect of
the policy controlled action is fulfill by a
corresponding value in the tested action

For instance; test if a transmitted
document/video/etc. is of particular type

It is a Guard extension
Can be use to handle specialized algorithm,
legacy code and scalability issues
Method classify - checks if the instance from
the provided description is of the indicated
type
Classifiers Factory associates classes of
classifiers with names of action properties

History Monitors (Loggers)
Its role is to collect records of desired
actions happening in the system

For instance of failed logging actions
It is a Guard extension
Can be plugged to existing system logging
mechanism
Method testHistory - checks if the specified
number of occurrence of the specified
action is recorded in the logger
HistoryMonitor Factory associates classes of
HistoryMonitors with names of action
classes they collects

KPAT

KAoS Policy Administration Tool (KPAT) Hides
the Complexity of OWL for Policy Specification

Dynamically
obtains list of
selections from
the ontology
repository based
on the current
context.
Graphical
template editor
allows creation of
simplified GUIs
Cmap interface
(COE) available
for ontology
definition

Graphical Tools for Generation of Policy: KPAT
Hypertext Policy Editor and Policy Wizard

Alternative user interfaces for policy
creation:

Single hypertext editor
Policy Wizard

Users choice lists are created from
ontology based on the context

Managing Policies
Policy hypertext
descriptions are
automatically displayed
Policies are rank
ordered by importance
The order can be
adjusted by using the
arrow buttons or
dragging and dropping
within the list.
The rankings of other
policies will adjust to
accommodate the new
position
Policies can be filtered
according to their actor
or action

Additional KAoS Functionality
Overview

KAoS functionality is accessed by:
APIs to Services through CSI
(Common Services Interface) and
additional platform specific layers
Graphical interface - KPAT

CSI: Transport Service
Common Services Interface

Transport provides an abstraction to the
underlying message passing mechanism, a
simple way to bind to a given transport and
send messages allowing applications to tailor
their own communication protocol.

Registration

Transport

Query

Request

Subscribe

Constrain (policy)

Platform 1

Application 1

Platform 2

Application 2

message

CSI: Functional Registration and
Matching Service

Common Services Interface
Registration provides the ability to publish an
entities capabilities and status, update both
the capabilities and status.

Registration

Transport

Query

Request

Subscribe

Constrain (policy)

Platform 1

Application 1

Platform 2

Application 2

I have a
camera.

CSI: Request Service
Common Services Interface

Request allows one entity to send a request
to another typically to execute some action.
The actions are specified in the ontology as
are the properties for action.

Registration

Transport

Query

Request

Subscribe

Constrain (policy)

Platform 1

Application 1

Platform 2

Application 2

Take a
picture of

me.

CSI: Query Service
Common Services Interface

Query allows an entity to retrieve information
about another entity. The allowable queries
are specified in the ontology, as well as the
properties associated with each query. This
is a “pull” method.

Registration

Transport

Query

Request

Subscribe

Constrain (policy)

Platform 1

Application 1

Platform 2

Application 2

What is your
current

position? I am at
(32.41N,
87.26W).

CSI: Subscribe Service
Common Services Interface

Subscribe allows an entity to register to as
an observer of anything defined as
observable. The observable and its
properties are described in the ontology.
This is a “push” method.

Registration

Transport

Query

Request

Subscribe

Constrain (policy)

Platform 1

Application 1

Platform 2

Application 2

Let me know
if your

position
changes

Now I am
at (2,4)

I am at
(2,3)

CSI: Constrain (policy) Service
Platform 1

Application 1

Common Services Interface Platform 2

Application 2

Policies allow constraints to be applied to an
entity external to the entity itself. They can
be dynamically modified to adjust the bounds
on a particular entity based on the current
context.

Registration

Transport

Query

Request

Subscribe

Constrain (policy)

Robot complies with constraintHuman can view constraint

KAoS API

Interface to KAoS Policy System
Who uses this interface:

Actor which wants to learn about policies applicable to
its current situation
Enforcer which intercepted the actor attempt to
perform a given action and will enforce policies on it

Makes Transparent complexity of policy reasoning
Requires description of the Action Instance:

Context – includes subject ID or its credentials
Ontology-base Action class name
List of ontology-based names of the action context
elements and their values for this action

KAoS CSI API data structure
The Action Instance Description (AID) is the
key data.
Currently three methods to create it:

By separate calls to the AID interface; adding
action properties one be one
By passing a hash map to the constructor
containing property name and value mapping
By passing an OWL description of the instance
in a string

A user can use any one (or a combination of)
the interface options.

Example of
Action Instance Description

Actor invokes an operation with properties

NATOActionInAsiaActionConcepts.
_documentSubject _

TopSecreteActionConcepts.
_documentClassification

ActionConcepts.RetriveDocumentActionClassName(s)

IntellOfficer32Subject (ActorId)

Example ValuePropertyName

Basic CSI Policy Methods
NameSpace: kaos.core.csi.policy

checkPermissionFor
(ActionInstanceDescription aid)

Checks if the given action is permitted according to
the current set of policies.

getObligationsForTriggerCondition
(ActionInstanceDescription triggerAID)

Based on the specified trigger condition described
by an ActionInstanceDescription, select all
matching obligations and return them as
ActionInstanceDescriptions.

KAoS Spatial Reasoning
Component (Ksparc)

Ksparc features
Integrated with KAoS Services
Framework
Allows to querying for relative and
absolute spatial relations among people,
objects, and robots
Calculates absolute values of the
relations: distance, angles, etc
Consist of set of local spatial reasoners
and a global spatial reasoner
coordinating the reasoning

Ksparc usage

Support spatial elements in robot
human dialogs
Allows for both absolute and egocentric
references and recalculation of spatial
point of reference
Allows to check policies that contain
spatial information

Example reasoning result

The relations are calculated between the centrally located Robot and the gray object.

Further information:

http://ontology.ihmc.us

Joint Battlespace Infosphere

KAoS Policies for JBI Access
Control

Enhancement of Air Force Research Laboratory combat
information management system together with ISX in
the J-DASP project
Access control to information and services limited
KAoS allows for extension of the existing JBI access
control triple to full semantic description of the
controlled situation
Ontology vocabulary allow for declarative specification of
policy and applicability based on context
Quality of Service policies supporting needs of tactical
environment

KAoS infrastructure inside JBI

Communities of Interest

COI Concepts
Assets and partnerships situated in the context of the
mission
Specific producers, consumers, data product and policies
Many types of information must be captured in an easy-
to-understand form:

information needs – COI scope,
types of information
types of consumers
infospace managers
applications used by consumers
degree of information integration
information security activities
consensus set of vocabulary terms and definitions

Allows partners to determine whether the aggregated
assets are adequate for performing the mission

Support for the COI Lifecycle
Exploration

Defining COI goals, consumers and producers of
information, semantics of information, policies, etc.

Implementation
Grounding to the operating platform; mapping to the
JBI infrastructure
Definition of needed semantic transformations

Operations
Monitoring community dynamics, relationships among
participants, maintaining the community

Requirements-Features Overview

COI-Tool Dataflow

KAoS-CMap-JBI Integration
for COI Infospaces

Create the New METOC COI

Graphically Define Ontology of
Weather Concepts and Products

and
XML Schemas for Each Partner

Seamless and Secure Federation
Among Highly- and Loosely-
Connected Infospaces

Vision for Federation

Sharing of MIOs across infospaces
Seamless subscriptions and queries across infospaces
Transparency to CAPI clients
Controlled via policies – not unrestricted
Identity and integrity of individual infospaces preserved

Efficiency when handling subscriptions and queries
Criteria: Latency, Bandwidth, Storage, Availability

Dynamic translation of compatible MIOs
Different schemas
Restrictions on MIO content sharing
Bandwidth/efficiency requirements

Project Goals
Interface (API) Design for Federation
Enable Federation Between Infospaces

Enterprise – Enterprise
Tactical – Tactical
Enterprise – Tactical
Not limited to just two instances

Control Federation Through Policies and
Contracts
Optimize Federation via Adaptive Caching and
Replication
Work with Multiple, Existing Implementations

Overall Architecture

CAPI

CAPI

Local
Information

Space

Producer Producer

Consumer

Publisher Data
(Access Control,

Information Preprocessing,
QoS Enforcement,

Information
Transformation)

Publisher Control
(Registration,

Advertisement,
Feedback, RFIs)

Broker
(Consumer Data)

Consumer Control
(Registration,

Subscription, Search
and Query
Requests)

Transformation
Components

(Policy-based)

Quality of Service
Management

Federation Service (Handles Redirection)

Federation Proxy
(Connector)

Federation Proxy
(Connector)

Consumer

Federated
Infospace

Federated
Infospace

Runtime Phase

GRASP - Generic, Risk-Adaptive,
Semantically-rich Policy Framework

Project with ISX
for AFRL

GRASP Goals

• Provide security administrators with enough
information to explicitly express who gets access to
what information under varying operating conditions
Grant assurances of secure enforcement through
mathematically-grounded analysis, runtime
simulation, and clear visualization of policy
Maintaining awareness of the security of the system
in the face of malicious attack is of the utmost
importance, and GRASP provides the capabilities to
stay aware of the weaknesses of the system and stay
in control of the policies in force in the case of attack

GRASP Framework

Policy Visualization
and

Risk Awareness

Policy Simulation

Intuitive Policy Creation

Policy Provenance

Automated Policy
Adaptation

Policy Decision Logging

Dynamic Policy
Enforcement

Automated Logical
Policy Analysis

System Logging
and

Risk Analysis

Policy Versioning

Experiment Ph I, Complete Ph II

Existing, Utilize in Ph IAnalyze / Design Ph II,
Implement Post Ph II

Analyze Ph I, Implement Ph II

Kaa: KAoS Adjustable Autonomy

Adjustable autonomy
Ability to impose and modify constraints that affect the
range of actions an agent is capable of performing or is
permitted or required to perform
Intent of adjustment is to lead to measurably better overall
performance of the human-agent team in a given context

Support for adjustable autonomy in KAoS
Context-based policy adaptation

Dynamically adjust policies to enable quick response to threats
and optimization of overall system performance

Considers the utility of various choices for autonomy
adjustment

Reasoning based on dynamically built decision network

Autonomy Adjustment for
Observed Situation in the World

Situation
awareness

Get related
policies

KAoS
Directory
Service

Analyze
policies

Common
Services
Interface

• Check the
relationship
between each
policy and the
observed event

Decide
autonomy
adjustment

if related

Kaa

Knowledge
Base

Situation
Analysis

Potential

Possible

Performable

Permitted

Available

Achievable
Obligated

Adjustment choices

Utility computation
for each choiceModify

policies

• Decision-theoretic algorithm based on
influence-diagram

Context-based Influence
Diagram

Example context
Policy: Deny intel-doc access to NATO (negative
authorization)
Situation: US-NATO joint anti-terrorism mission in
Afghanistan

Decision: Status Quo Vs.
Permission to NATO completeness

risk

cost

••
• Utility

Situation-specific attributes

Policy-dependent choices

Actions for permission
(e.g., access configuration)

Resources for actions
(e.g., secure network)

Domain-dependent actions/resources

Decision network construction is driven
by domain-independent knowledge
The probability of each node state and
its valuation is also context-dependent

Ontology-based Declarative
Knowledge for Kaa

Limitation of the current decision model
Most knowledge used to build a decision network is static
Difficult to handle context-specific dynamic information
Complicated transition to a new domain

Solution approach
Represented the information required for Kaa declaratively
in the ontology

Computational knowledge: node probability and
valuation
Logical knowledge: causal relationship between nodes

Provided KPAT-like user interface to define the knowledge
Developed necessary mechanisms to dynamically construct
influence diagrams

For a real world problem, the diagram can be very
complex with multi-layers

