
KAoS Policy Development
and Integration

Andrzej Uszok, Jeffrey M. Bradshaw
auszok@ihmc.us, jbradshaw@ihmc.us

IHMC

Introduction
The KAoS Services Framework can be
straightforwardly integrated with existing
software using the following steps.

IHMC

Steps in Policy Development
Setting up the general configuration
Developing application-specific ontologies
Making an ontology snapshot
Configuring an ontology proxy
Developing the Java ontology vocabulary
Creating policies
Saving a policy snapshot file
Configuring the ant script to start the business logic code
Integrating business logic code with KAoS
Creating KAoS actors
Deciding which policy services are needed
Integrating policy services with business logic

IHMC

Setting Up the General Configuration
After installing KAoS in the selected location on the disk
by unzipping the distribution file, the KAoS_HOME
environment variable should be set to the root of the
selected installation directory.
KAoS requires:

Java 1.5 or higher
ant 1.7 or higher

In other selected locations for integration development,
the following directories should be created as
placeholders for later configuration steps:

config
scripts
scr
lib

IHMC

Developing Application-Specific Ontologies

KAoS provides a set of generic ontology concepts
needed for basic policy creation. These are
available at: http://ontology.ihmc.us/ontology.html
This set of concepts usually has to be extended
with concepts specific to the application under
development.
The application ontology should contain
definitions for all the concepts for which the
business logic code can provide information, e.g.,

Through code instrumentation, the business logic for
the control of radios can usually provide required
information about transmission parameters.
Thus, all these concepts should be present explicitly in
the ontology, in order that policies can refer to them.

IHMC

Developing Application-Specific Ontologies
(cont.)

In general the following new ontology files are created:
ApplicationAction.owl – containing definitions of application
action classes with their specific properties

The new Action classes should be a subclasses of
http://ontology.ihmc.us/Action.owl#Action
The properties of the Action classes should be subproperties of
either http://ontology.ihmc.us/Action.owl#hasDataContext or
http://ontology.ihmc.us/Action.owl#hasObjectContext in order to
provide hints to KPAT about their importance

ApplicationActor.owl - containing definitions of application actor
classes (or roles) with their properties

The new Action classes should be a subclasses of
http://ontology.ihmc.us/Actor.owl#Actor

ApplicationEntity.owl – containing definitions of application
specific entities with their properties, which will be used to define
context of the actions:

The new Entity classes should be a subclasses of
http://ontology.ihmc.us/Entity.owl#Entity (or more specific subclass)

IHMC

Making an Ontology Snapshot
The ontology files should be configured with
their final static namespace and should be
loaded into the web server configured with a
URL corresponding to this namespace
Because access to the distributed web servers
on which stored ontologies reside sometimes
can be unreliable, slow, or inaccessible (e.g., no
Internet connection, firewalls), KAoS provides a
tool to create ontology snapshots.
An ontology snapshot puts all the required
ontologies in a single file.

IHMC

Making an Ontology Snapshot (cont.)
KAoS OntologyProxy can be started by calling target
ontology-proxy from ant build KAoS_HOME\scripts\kaos-
tools
Going to the KPAT tab “Create Snapshot” allows the
creation of a new snapshot:

A default KAoS ontology set should added to the snapshot:
Select from the pulldown list
Press the “Gather Ontologies” button at the bottom

Now, all the ontology files should be loaded into the snapshot
Paste their URL into the field
Press the “Gather Ontologies” button at the bottom.

The tab “Edit Snapshot” allows modification or
automatically refreshing of an existing snapshot. It is
also very useful when ontologies have to be gathered
from disparate domains (e.g. public Internet and
corporate network).

IHMC

Making an Ontology Snapshot (cont.)
The ontology snapshot should be saved
preferably into:
config/ontologySnapshots/SnapshotName.ont

IHMC

Configuring an Ontology Proxy
The ontology proxy allows ontologies to be
accessed locally, without the need for a
network connection.
In the script/runProxyWithOntologySnap
create ant build file with target running
OntologyProxy preloaded with this
snapshot;

for example see target ontology-proxy-for-
flexfeed in KAoS_HOME/scripts/kaos-tools

IHMC

Developing the Java Ontology Vocabulary
Development of code linking the business logic with
KAoS policies and services requires references to the
URLs of ontology concepts
KAoS provides a simple tool to create Java constants for
every concept defined in a given ontology with values
equals to their URLs.
In the script/generateOntologyVocabulary, create an ant
build file with target running OntologyMapper for each
defined ontology file

for example see target vocabulary-selected in
KAoS_HOME/scripts/kaos-tools

No explicit URLs should be used in the code.
Based on experience, such a practice creates difficult debuging
problem (misspelled URLs, ontology changes).
Reruning the script automatically updates the URLs and
concepts, and keeps the code consistent with the ontology.

IHMC

Creating Policies
Policies are created using KPAT, which currently
provides two user interfaces: a traditional form-
based GUI, and a hypertext GUI

Both interfaces provide similar capabilities
In both cases, the list of menu selections are
dynamically obtained from the ontology repository
based on the current context of policy creation

A policy template definition capability allows the
creation of simple custom interfaces to define a
given kind of policy.

IHMC

Saving a Policy Snapshot File
Created policies and other concepts created in this process should
be saved in policy snapshot file

This file can be created from KPAT tab “Configuration”
The file should be saved in
config/policyConfigurationSnapshots/Name.cfg
In scripts/runKAoSwithPolicyConfiguration create ant build file with
target running KAoS with this policy snapshot preloaded; make sure
to set up the first two properties correctly

<property name="ontology.file" value="${basedir}/config/ontologySnapshots/ON.ont" />
<property name="directory.snapshot" value="${basedir}/config/policyConfigurationSnapshots/PS.cfg"/>

<target name="runKAoSwithL3078" description="Start KAoS with policy and ontolgy snapshot">
<fail unless="env.KAOS_HOME" message="Please set the environment variable KAOS_HOME" />

<echo message = "Starting ontology proxy, KAoS DS, Servlet and KPAT"/>
<parallel threadCount="4">
<ant inheritAll="true" antfile="scripts/kaos-tools/build.xml" target="ontology-proxy-autostart" dir="${env.KAOS_HOME}"/>
<sequential>
<sleep seconds="8" />
<ant inheritAll="true" antfile="scripts/kaos-core/build.xml" target="run-kaos" dir="${env.KAOS_HOME}"/>
</sequential>
</parallel>
</target>

IHMC

In order for existing applications to be integrated with KAoS at runtime certain parameters
have to be provided. These parameters make KAoS functionality accessible from the
modified application source code.
The following elements are needed in the target starting the application:

<classpath>
<!-- Include all jar files in the KAoS ${lib} directory -->
<fileset dir="${env.KAOS_HOME}/lib">

<include name="**/*.jar" />
<exclude name="**/${optionalLib}/*.jar" />

</fileset>
<!-- Include the path to the config files -->
<pathelement path="${env.KAOS_HOME}/${cfgPath}"/>

</classpath>

<jvmarg value="-Dkaos.core.service.boot=VMA.cfg" />
<jvmarg value="-

Dkaos.core.policy.service.boot=${env.KAOS_HOME}/${config}/guardConfiguration.cfg" />
<jvmarg value="-Djava.util.logging.config.file=${config}/logging.properties" />

Configuring the ant script to start
the business logic code

IHMC

If the jar libraries and other configuration
parameters are correctly specified, then all
available KAoS functionality can be accessed by
retrieving the appropriate implementation of the
given subset of functionality.
This is done by calling a specific factory method
on static class: kaos.core.csi.CSIFactory
Such calls will create background connections with
the KAoS Directory Service

Integrating business logic code with KAoS

IHMC

Creating KAoS Actors
The application must register itself as an
actor or as multiple actors whose identities
will be used to make policy decisions about
its actions

Some class within the application code has to
extend kaos.core.csi.KAoSActorImpl and call its
registerWithKAoS()
This class can also register specific actor
properties using addProperty()

e.g an actor representing a radio operator can have
properties specifying his location, clearance, etc.

IHMC

Policy Services available for business logic
Inside the business logic the calls to KAoS Policy
Service can inform the application about:

Authorization of an action – if an action is not authorized, an
exception is thrown with information which policy decided it.
(method checkPermission)
Additional obligations related to an action - a list of obligations
for this actor are returned in a list sorted by the priority action
description. In addition, if there are obligations for other actors,
then KAoS will try to locate them and will send the appropriate
actions to them. In order to accept such obligation actions, the
actor has to implement a listener for KAoS CSI Requests.

(method getObligationsForTriggerCondition)
Configuration options for the planned action – a range of allowed
values for the given action properties is returned if a partial
description of the action is sent to KAoS.
(method getAllowableValuesForActionProperty)

IHMC

Integrating Policy Services with Business Logic

Action descriptions are the main datatype exchanged
with KAoS:

kaos.core.csi.ActionInstanceDescription(Impl)
kaos.core.csi.OntPropertyDescription(Impl);

Applications that check authorization policies must be
able to create of action descriptions, and applications
that handle obligations must be able to interpret them
when received.
Action descriptions can contain a complex value in the
form of

kaos.core.csi.OntInstanceDescription(Impl);
Names used as types and properties in these data
structures are from the Java vocabulary files generated
using the mapper.

